Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=1+2+2^2+2^3+2^4+2^5+...+2^{2004}+2^{2005}+2^{2006}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2004}+2^{2005}+2^{2006}\right)\)
\(A=7+2^3\left(1+2+2^2\right)+...+2^{2004}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{2004}.7\)
\(A=7\left(1+2^3+...+2^{2004}\right)\) chia hết cho 7
b)\(2^{2006}=2^{2004}.2^2=\left(2^6\right)^{334}.4=64^{334}.4\)
Mặt khác: \(64\equiv1\left(mod7\right)\Rightarrow64^{334}\equiv1\left(mod7\right)\Rightarrow64^{334}.4\equiv4\left(mod7\right)\)
=>22006 chia 7 dư 4
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
A= (1+3^2+3^4)+.......+(2^2002+2^2004+2^2006)
= 91+......+ 2^2002.(1+3^2+3^4)
= 91+.+ 2^2002.91 chia hết cho 91 (đpcm)
b, Ta có: 9A= 3^2+3^4+....+3^2008
9A-A= 3^2008-1 => 8A= 3^2008-1 => 8A+1= 3^2008
Thay vào ta có 27^263x.9^5y = 3^2008 => 9^263x.3^263x.9^5y= 3^2008 => 9^( 263x+5y).3^263x= 3^2008
=> 3^263x= 3^2008-9^( 263x+5y) => 3^263x= 9^1004-9^( 263x+5y) => 3^263x= 3^{2.(1004-263x-5y)}
=> 263x= 2008-2.263x-10.y => 263x+2.263.x+ 10y= 2008
=> 789x + 10y= 2008 . Vì 10y chia hết cho 2; 2008 chia hết cho 2 => 789x chia hết cho 2.
Mà (789; 2)=1 => x chia hết cho 2 . Do x là số nguyên tố nên x= 2 => y = 43.
Vậy (x; y)= (2; 43)
Không biết đúng không ^o^
tham khảo đi
Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2)
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7
=> B chia hết cho 7
Vậy A = 3 + B