K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

tham khảo đi 

Đặt tổng là A = 1 + 2 + 2^2 + 2^3 + ... + 2^2002 = 1 + 2 + B 
Kể từ số hạng 2^2 đến 2^2002 có 2001 số hạng mà nhóm ba số hạng liên tiếp ta được một số chia hết cho 7 
Do đó B = 2^2 + 2^3 + 2^4 + ... + 2^2000 + 2^2001 + 2^2002 
= 2^2 (1 + 2 + 2^2) + ... + 2^2000 (1 + 2 + 2^2) 
= 2^2. 7 + 2^5 . 7 + ... + 2^2000. 7 
=> B chia hết cho 7 
Vậy A = 3 + B 

4 tháng 7 2017

a)\(A=1+2+2^2+2^3+2^4+2^5+...+2^{2004}+2^{2005}+2^{2006}\)

\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2004}+2^{2005}+2^{2006}\right)\)

\(A=7+2^3\left(1+2+2^2\right)+...+2^{2004}\left(1+2+2^2\right)\)

\(A=7+2^3.7+...+2^{2004}.7\)

\(A=7\left(1+2^3+...+2^{2004}\right)\) chia hết cho 7

b)\(2^{2006}=2^{2004}.2^2=\left(2^6\right)^{334}.4=64^{334}.4\)

Mặt khác: \(64\equiv1\left(mod7\right)\Rightarrow64^{334}\equiv1\left(mod7\right)\Rightarrow64^{334}.4\equiv4\left(mod7\right)\)

=>22006 chia 7 dư 4

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

2 tháng 1 2019

mk chỉ làm đc câu a) bài 1 thôi nha !

Bài 1 .

Ta có :

 a) A = (2+22)+(23+24)+...+299+2100

=> A = (1+2).21+(1+2).23+...+(1+2).299

=> A = 3.(21+23+...+299\(⋮\)3

=> A \(⋮\)3

25 tháng 3 2016

A= (1+3^2+3^4)+.......+(2^2002+2^2004+2^2006)

 = 91+......+ 2^2002.(1+3^2+3^4)

= 91+.+ 2^2002.91 chia hết cho 91 (đpcm)

27 tháng 3 2016

b, Ta có: 9A= 3^2+3^4+....+3^2008

               9A-A= 3^2008-1 => 8A= 3^2008-1 => 8A+1= 3^2008

 Thay vào ta có 27^263x.9^5y = 3^2008 => 9^263x.3^263x.9^5y= 3^2008 => 9^( 263x+5y).3^263x= 3^2008

 => 3^263x= 3^2008-9^( 263x+5y) => 3^263x= 9^1004-9^( 263x+5y) => 3^263x= 3^{2.(1004-263x-5y)}

=>  263x= 2008-2.263x-10.y => 263x+2.263.x+ 10y= 2008

=> 789x + 10y= 2008 . Vì 10y chia hết cho 2; 2008 chia hết cho 2 => 789x chia hết cho 2.

 Mà (789; 2)=1 => x chia hết cho 2 . Do x là số nguyên tố nên x= 2 => y = 43.

 Vậy (x; y)= (2; 43)

 Không biết đúng không ^o^