K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Ta có số hạng của A là:(100-1):1+1=100(số)

Nên A=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+...+(2^96+2^97+2^98+2^99+2^100)

​A=62+2^5*62+...+2^95*62=62*(1+2^5+...+2^95) Suy ra A chia hết cho 62.Tk mình nhé bn!

13 tháng 1 2018

Ta có : 62 = 2 . 31

Mà A luôn chia hết cho 2                                        ( 1 )

A = 2 + 22 + 2+ .... + 2100

A = ( 2 + 22 + 23 + 24 + 25 ) + .... + (  296 + 297 + 298 + 299 + 2100 )

A = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 . ( 1 + 2 + 22 + 23 + 24 )

A = 2 . 31 + ... + 296 . 31 \(⋮\)31                               ( 2 )

Từ 1 và 2 => A chia hết cho 62

Vậy A chia hết cho 62

15 tháng 10 2016

2A=2^2+2^3+2^4+....+2^101

2A-A=(2^2+2^3+2^4+....+2^101) - (2+2^2+2^3+...+2^100)

1A=2^101 - 2

A= 2^101-2

15 tháng 10 2016

mình chỉ làm được câu A thôi

A=2+2^2+2^3+...+2^100

A=2^(1+2+3+...+100)

Tính (1+2+3+...+100)

([100-1]/1+1)/2+(1+100)=5050

A=2^5050

A=25502500

a) Có A=2+22+23+24+...+2100

             = 2.(1+2+4+8)+25.(1+2+4+8)+29(1+2+4+8)+...+296.(1+2+4+8)

             =2.15+25.15+29.15+...+296.15

             =15(2+25+29+...+296)

=> A \(⋮\) 15 

b)

A=2+22+23+.....+2100

   =  (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)

   = 1.30 + 24.30 + ..... + 296.30

   = 30.(1+34+...+296)

=>A\(⋮\) 30 < = > A \(⋮\) 10

< = >A có tận cùng là 0 

5 tháng 1 2020

có ai biết giups mình với nha

5 tháng 1 2020

\(A=2+2^2+...+2^{100}\)

\(\Rightarrow A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(\Rightarrow1.\left(2+2^2+2^3+2^4+2^5\right)+...+1.\left(2+2^2+2^3+2^4+2^5\right)\)

\(\Rightarrow1.62+...+1.62\)

Mà \(62⋮62\)

\(\Rightarrow A=2+2^2+...+2^{100}⋮62\)

29 tháng 12 2017

Ta thấy \(A=2+2^2+2^3+...+2^{99}+2^{100}\)

\(A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(A=2\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...2^{96}\left(1+2+4+8+16\right)\)

\(A=31.\left(2+2^6+...+2^{96}\right)\)

\(A=31.2.\left(1+2^5+...+2^{95}\right)\)

\(A=62.\left(1+2^5+...+2^{95}\right)⋮62\)

Vậy A chia hết cho 62.

29 tháng 12 2017

cám ơn bạn nha a hihi

30 tháng 12 2017

a = 2 + 22 +23+........................+ 2100 chia hết cho 62

  a =  [ 2 + 22 +23+.24+25  ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ] 

 a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ] 

a=  62 . [ 210 +  215 +  220 +......................+  2100 ] 

 Mà 62 chia hết cho 62 =>    62 . [ 210 +  215 +  220 +......................+  2100 ]   hay a chia hết cho 62

30 tháng 12 2017

a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)

   = 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)

   = 62+2^5.62+....+2^95.62

   = 62.(1+2^5+....+2^95) chia hết cho 62

=> ĐPCM

k mk nha

27 tháng 12 2017

\(A=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\) 

\(A=\left(2+2^6+...+2^{96}\right)\left(1+2+2^2+2^3+2^4\right)\)

\(A=31\left(2+2^6+...+2^{96}\right)⋮31\)

Mặt khác \(A⋮2\) và 2: 31 là hai số nguyên tố cùng nhau

Vậy \(A⋮62\)

27 tháng 12 2017

A = 2 + 2^2 + 2^3 + ... + 2^100

=> A = (2 + 2^2 + 2^3 + 2^4 + 2^5) + ... + (2^96 + 2^97 + 2^98 + 2^99 + 2^100)

=> A = (2 + 2^2 + 2^3 + 2^4 + 2^5) + ... + 2^95.(2 + 2^2 + 2^3 + 2^4 + 2^5)

=> A = 62 + ... + 2^95.62

=> A = 62.(1 + ... + 2^95) chia hết cho 62.

Vậy A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^100 chia hết cho 62 (đpcm)