K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

a) S = 2(1+2+3+4+5)+2.2.(1+2+3+4+5)+...+2.20(1+2+3+4+5)

= 2.15 + 2.2.15+...+2.20.15.Vì vậy S chia hết cho 15

b)Các chữ số chia hết cho 15 có tận cùng là 0 hoặc 5.

Mà S chia hết cho 2 nên S có chữ số tận cùng là 0.

c) Ta có:

S = 2.1+2.2+2.3+...+2.100

= 2(1+2+3+...+100)

=2.5050(bạn có thể xem cách tính này trong SGK tập 1 trang 19)

= 10100

6 tháng 1 2021

giúp e giải vs e đang cần gấp

6 tháng 1 2021

a, \(A=3+3^2+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+3^5+...+3^{119}\right)\)

\(\Rightarrow A⋮4\)

\(A=3+3^2+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)\)

\(\Rightarrow A⋮13\)

b, \(3A=3^2+3^3+...+3^{121}\)

\(\Rightarrow2A=3^{121}-3=3\left(3^{120}-1\right)\)

Vì \(3^{120}=3^{4.30}\) có chữ số tận cùng là 1 suy ra \(3^{120}-1\) có chữ số tận cùng là 0

\(\Rightarrow A=\dfrac{3\left(3^{120}-1\right)}{2}\) có chữ số tận cùng là 0

c, Đề là \(2A+3\) thì có vẻ hợp lí hơn

\(2A+3=3^{121}-3+3=3^{121}\) là lũy thừa của 3

23 tháng 10 2017

Chia hết cho 3

a) A = 2 + 22 + 23 +....... + 2100

A = ( 2+ 22) + (23 + 24) + ........ (299+2100)

A = 2(1+2) + 23(1+2) + ........+ 299(1+2)

A= 2. 3 + 23 . 3 + ........ + 299. 3

= 3 . ( 2 + 23 + .........+ 299)

Vì 3 chia hết cho 3 => 3. ( 2 + 23 + ........+299) chia hết cho 3 hay A chia hết cho 3

Chia hết cho 15 cũng tương tự như vậy nha bn!

Ghép 4 số rồi tính!

CHÚC BN HOK GIỎI!

23 tháng 10 2017

bạn làm giúp mình luôn chia hết cho 15 nha 

17 tháng 11 2017

A = (2+2^2)+(2^3+2^4)+....+(2^99+2^100)

= 2.(1+2)+2^3.(1+2)+....+2^99.(1+2)

= 2.3+2^3.3+....+2^99.3

= 3.(2+2^3+....+2^99) chia hết cho 3

A = (2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^97+2^98+2^99+2^100)

= 2.(1+2+2^2+2^3)+2^5.(1+2+2^2+2^3)+....+2^97.(1+2+2^2+2^3)

= 2.15+2^5.15+....+2^97

= 3.5.(2+2^5+....+2^97) chia hết cho 5

=> ĐPCM 

k mk nha

17 tháng 11 2017

kb vs mik ko quân

21 tháng 11 2015

bó tay . com .vn

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

11 tháng 10 2015

A = (2 + 22 + 23 + 24) + ...+ (296 + 297 + 299 + 2100)  ( Có 100 :4 = 25 nhóm)

A = 2.(1 + 2 + 22 + 23) + ...+ 296.(1 + 2 + 2+ 23) = 2.15 + ...+ 296.15 = (2 + 25 + ...+ 296).15 chia hết cho 15 

=> A chia hết cho 15 => A chia hết cho 3

Nhận xét A luôn chia hết cho 2 . Mà A chia hết cho 15 => A chia hết cho 5 

Vậy A chia hết cho cả 2 và 5 => A có tận cùng là chữ số 0

7 tháng 11 2015

Câu a và câu b bài 2 xem Câu hỏi tương tự 
Bài 2 câu c : 
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 ) 
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0 
=> Số tận cùng của A = 0. 
Bài 1 để nghiên cứu