Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
A = 1 + 2 + 22 + 23 + ... + 22019
Xét dãy số: 0; 1; 2; 3;...;2019 dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là:
(2019 - 0) : 1 + 1 = 2020 (số hạng)
Vì 2020 : 2 = 1010 nên nhóm hai số hạng liên tiếp của A vào nhau ta được A:
A = 1 + 2 + 22 + 23 +...+ 22019
A = (1 + 2) + (22 + 23) + ... + (22018 + 22019)
A = 3 + 22.( 1 + 2) + .... + 22018.(1 + 2)
A = 3. + 22.3 + .... + 22018.3
A = 3.( 1 + 22 + ... + 22018)
Vì 3 ⋮ 3 ⇒ A = 3.(1 + 22 + ... + 22018) ⋮ 3
Vì 2020 : 3 = 673 dư 1 nên nhón 3 hạng tử liên tiếp của A thành một nhóm thì A là tổng của 1 và 673 nhóm khi đó
A = 1 + ( 2 + 22 + 23) + (24 + 25 + 26) + ... + (22017 + 22018 + 22019)
A = 1 + 2.( 1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 22017.(1 + 2 + 22)
A = 1 + 2.7 + 24.7 + ... + 22017 . 7
A = 1 + 7.(2 + 24 + .... + 22017)
Vì 7 ⋮ 7; 1 không chia hết cho 7 nên A không chia hết cho 7
Việc chứng minh A ⋮ 7 là điều không thể xảy ra.
\(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3.\left(2+2^3+...+2^{59}\right)\) ⋮ 3