Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
https://cungthi.online/cau-hoi/cho-tam-giac-abc-tap-hop-nhung-diem-m-thoaman-4mambmc-30238-1652.html
Gọi G là trọng tâm của ΔABC
⇒ \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
⇒ \(MA^2+MB^2+MC^{2^{ }}+2VT=9MG^2\)
⇒ VT = 9MG2 - MA2 + MB2 + MC2
⇒ \(\dfrac{a^2}{6}\) = 9MG2 - MA2 + MB2 + MC2
MA2 + MB2 + MC2
\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)
= 3MG2 + 2\(\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)+ GA2 + GB2 + GC2
= 3MG2 + \(GA^2+GB^{2^{ }}+GC^2\)
do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Vậy ta có
\(\dfrac{a^2}{6}=6MG^2-GA^2-GB^2-GC^2\)
⇔ \(\dfrac{a^2}{6}+\left(GA^2+GB^2+GC^2\right)=6MG^2\)(1)
Lưu ý, GA,GB,GC lần lượt bằng \(\dfrac{2}{3}\) độ dài các đường trung tuyến kẻ từ A,B,C. Nhưng do ΔABC đều nên chúng sẽ lần lượt bằng \(\dfrac{2}{3}\) đường cao kẻ từ A,B,C (đặt là ha ; hb; hc)
Dễ dàng tìm được ha = hb = hc = \(\dfrac{a\sqrt{3}}{2}\)
⇒ GA = GB = GC = \(\dfrac{a\sqrt{3}}{3}\)
⇒ GA2 = GB2 = GC2 = \(\dfrac{a^2}{3}\)
⇒ GA2 + GB2 + GC2 = a2
Thay vào (1)
\(\dfrac{a^2}{6}+a^2=3MG^2\) ⇔ MG2 = \(\dfrac{7a^2}{18}\)
⇔ MG = \(\dfrac{a\sqrt{14}}{6}\)
Vậy R = \(\dfrac{a\sqrt{14}}{6}\)
Ai xem hộ sai chỗ nào vs
Lấy \(I\)là trung điểm của \(AB\).
Khi đó \(\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\)
\(\overrightarrow{MA}.\overrightarrow{MB}=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)\left(\overrightarrow{MI}+\overrightarrow{IB}\right)=\overrightarrow{MI}.\overrightarrow{MI}+\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)+\overrightarrow{IA}.\overrightarrow{IB}\)
\(=MI^2-\frac{a^2}{4}=2a^2\Leftrightarrow MI^2=\frac{9}{4}a^2\)
Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(\frac{3a}{2}\).
a) \(MA^2+MB^2=MC^2\)
\(\Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} = {\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2}\)
\(\Leftrightarrow {x^2} + {y^2} + 12x - 10y - 5 = 0\)
\(\Leftrightarrow {\left( {x + 6} \right)^2} + {\left( {y - 5} \right)^2} = 66\)
Vậy tập hợp các điểm M là một đường tròn.
b) Tâm là điểm (-6 ; 5) bán kính bằng \(\sqrt{66}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) (a>0 mới đúng, độ dài ko thể nhỏ hơn 0)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=a\)
\(\Leftrightarrow3\left|\overrightarrow{MG}\right|=a\) (do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\))
\(\Leftrightarrow MG=\dfrac{a}{3}\)
\(\Rightarrow\) Tập hợp M là đường tròn tâm G bán kính \(\dfrac{a}{3}\)
Gọi C là giao điểm của AB và \(\Delta\), O là giao điểm IM và AB
Gọi \(I=\left(m;n\right)\Rightarrow IM:x-3y-m+3n=0\)
\(M:\left\{{}\begin{matrix}x-3y-m+3n=0\\x+y=0\end{matrix}\right.\Rightarrow M=\left(\dfrac{m-3n}{4};\dfrac{3n-m}{4}\right)\)
\(\Rightarrow IM=\sqrt{\left(\dfrac{m-3n}{4}-m\right)^2+\left(\dfrac{3n-m}{4}-n\right)^2}=\dfrac{\sqrt{10}\left|m+n\right|}{4}\)
\(d\left(I,\Delta\right)=\dfrac{\left|m+n\right|}{\sqrt{2}}=2\sqrt{2}\Rightarrow\left|m+n\right|=4\left(1\right)\)
\(\Rightarrow IM=\sqrt{10}\)
Ta có \(IO.IM=IA^2=R^2\Rightarrow IO=\dfrac{IB^2}{IM}=\dfrac{4}{\sqrt{10}}\)
\(d\left(I;AB\right)=\dfrac{\left|3m+n-2\right|}{\sqrt{10}}=\dfrac{4}{\sqrt{10}}\Rightarrow\left|3m+n-2\right|=4\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\) tìm được tọa độ điểm I
Đến đây viết phương trình đường tròn tâm I có bán kính \(R=\sqrt{2}\) là được.
\(\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x-2;y-1\right)\\\overrightarrow{BM}=\left(x-3;y+2\right)\end{matrix}\right.\)
\(MA^2+MB^2=30\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y-1\right)^2+\left(x-3\right)^2+\left(y+2\right)^2=30\)
\(\Leftrightarrow2x^2-10x+2y^2+2y-12=0\)
\(\Leftrightarrow x^2-5x+y^2+y-6=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=\frac{25}{2}\)
Đường tròn có bán kính \(R=\sqrt{\frac{25}{2}}=\frac{5\sqrt{2}}{2}\)