Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
Tìm số dư trong phép chia (2023\(\left(2023^{2024}+2024^{2025}+2025^{2026}\right)^{10}\)chia cho 111


tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)



Lời giải:
$\frac{a+2013}{a-2013}=\frac{b+2024}{b-2024}$
$\Rightarrow \frac{a-2013+4026}{a-2013}=\frac{b-2024+4048}{b-2024}$
$\Rightarrow 1+\frac{4026}{a-2013}=1+\frac{4048}{b-2024}$
$\Rightarrow \frac{4026}{a-2013}=\frac{4048}{b-2024}$
$\Rightarrow 4026(b-2024)=4048(a-2013)$
$\Rightarrow 4026b-4048a=4026.2024-4048.2013=2.2013.2024-2.2024.2013=0$
$\Rightarrow 4026b=4048a$
$\Rightarrow 2013b=2024a$
$\Rightarrow \frac{a}{2013}=\frac{b}{2024}$

Ta có :
\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)
mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)
\(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
bài làm
Ta có:
\(\frac{2024}{2023^{2} + k} = \frac{2023^{2} + 2023}{2023^{2} + k} = 1 + \frac{2023 - k}{2023^{2} + k}\)
Vậy
\(A = \sum_{k = 1}^{2023} \left(\right. 1 + \frac{2023 - k}{2023^{2} + k} \left.\right) = 2023 + \sum_{k = 1}^{2023} \frac{2023 - k}{2023^{2} + k}\)
Vì \(\frac{2023 - k}{2023^{2} + k} > 0\) khi \(k < 2023\), và bằng 0 khi \(k = 2023\), nên
\(2023 < A < 2024\)
Suy ra A ko phải là số tự nhiên