K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0. 
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b

10 tháng 3 2018

Xét : 2ab-2.(a+b)

= 2ab-2a-2b

= (ab-2a)+(ab-2b)

= a.(b-2)+b.(a-2)

Vì a>2 ; b>2 => a-2 > 0 ; b-2 > 0

=> a.(b-2)+b.(a-2) > 0

<=> 2ab > 2.(a+b)

<=> ab > a+b

Tk mk nha

27 tháng 4 2018

         \(\frac{a^3}{b}\ge a^2+ab-b^2\)

\(\Rightarrow\)\(a^3\ge a^2b+ab^2-b^3\)

\(\Leftrightarrow\)\(a^3-a^2b-ab^2+b^3\ge0\) 

\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2-ab\right)\ge0\)

\(\Leftrightarrow\)\(\left(a+b\right)\left(a-b\right)^2\ge0\)   (luôn đúng  do   a,b > 0;   (a-b)2 >= 0    )

Dấu "="  xảy ra   \(\Leftrightarrow\)\(a=b\)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

24 tháng 8 2018

Ta có  : \(\hept{\begin{cases}a>2\\b>0\end{cases}}\) (gt)

\(\Rightarrow ab>2b\)  (1)

và \(\hept{\begin{cases}b>2\\a>0\end{cases}}\)(gt)

\(\Rightarrow ab>2a\)  (2)

Từ (1) và (2)  . cộng vế với vế

\(\hept{\begin{cases}ab>2b\\ab>2a\end{cases}}\)

\(\Rightarrow2ab>2\left(a+b\right)\)

Từ (1) và (2) chia 2 vế cho 2 

\(\Rightarrow ab>a+b\) (đpcm)

28 tháng 3 2016

nhân 4 vào 2 vế,,,cm tuong đương

4a^2+4ab+4b^2=2(a+b)^2+2(a2+b2)

áp dụng 2(a^2+b^2)>=(a+b)^2

=> đpcm

NV
3 tháng 5 2019

a/

Do \(\left\{{}\begin{matrix}a>2\Rightarrow\frac{1}{a}< \frac{1}{2}\\b>2\Rightarrow\frac{1}{b}< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)

\(\Rightarrow\frac{a+b}{ab}< 1\Rightarrow a+b< ab\) (đpcm)

b/ Ko rõ đề là gì

c/ \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

23 tháng 9 2019

Ta có: \(a>2\Rightarrow a-2>0\)

\(b>2\Rightarrow b-2>0\)

\(\Rightarrow\left(a-2\right).\left(b-2\right)>0\)

\(\Leftrightarrow ab-2a-2b+4>0.\)

\(\Leftrightarrow ab+4>2.\left(a+b\right)\)

Có: \(a.b>2.2=4\)

\(\Rightarrow ab+ab>ab+4>2.\left(a+b\right)\)

\(\Rightarrow2ab>2.\left(a+b\right)\)

\(\Rightarrow ab>a+b\left(đpcm\right)\)

Chúc bạn học tốt!

25 tháng 4 2018

Cách ngắn hơn ( nên làm cách này ) : 

Ta có : 

\(a>0\)

\(b>0\)

\(\Rightarrow\)\(ab>0\) \(\left(1\right)\)

Lại có : 

\(a^2\ge0\)

\(b^2\ge0\)

\(\Rightarrow\)\(a^2+b^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)

Mà \(a>0\)\(;\)\(b>0\) nên dấu "=" không thể xảy ra 

\(\Rightarrow\)\(a^2+b^2>0\) \(\left(2\right)\)

Cộng theo vế (1) và (2) ta được : 

\(a^2+ab+b^2>0\) ( đpcm ) 

Vậy nếu \(a>0\)\(;\)\(b>0\) thì \(a^2+ab+b^2>0\)

Chúc bạn học tốt ~ 

24 tháng 4 2018

đề yêu cầu chứng minh cái gì vậy bạn?