Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(a+b+c=t\)
\(A=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2\)
\(=(2a+2b+2c-3c)^2+(2b+2c+2a-3a)^2+(2c+2a+2b-3b)^2\)
\(=(2t-3c)^2+(2t-3a)^2+(2t-3b)^2\)
\(=4t^2+9c^2-12tc+4t^2+9a^2-12ta+4t^2+9b^2-12tb\)
\(=12t^2+9(a^2+b^2+c^2)-12t(a+b+c)\)
\(=12t^2+9m-12t^2=9m\)
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
\(A=\left(2a+2b+2c-3c\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)
\(A=\left[2.\left(a+b+c\right)-3c\right]^2+\left[2.\left(a+b+c\right)-3a\right]^2+\left[2.\left(a+b+c\right)-3b\right]^2\)
Đặt \(a+b+c=n\)
\(\Rightarrow A=\left(2n-3c\right)^2+\left(2n-3a\right)^2+\left(2n-3b\right)\)
\(A=4n^2-12cn+9c^2+4n^2-12an+9a^2+4n^2-12bn+9b^2\)
\(A=12n.\left(n-a-b-c\right)+9.\left(a^2+b^2+c^2\right)\)
Ta có: \(a^2+b^2+c^2=m\)
\(\Rightarrow A=12.\left(a+b+c-a-b-c\right)+9m\)
\(A=9m\)
Vậy \(A=9m\)tại \(a^2+b^2+c^2=m\)
Tham khảo nhé~
\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)
\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath
A = (2a + 2b +2c - 3c)^2 + (2b + 2c +2a - 3a)^2 + (2c + 2a +2b -3b)^2
Đặt a + b + c = x thì
A = (2x - 3c)^2 + (2x - 3a)^2 + (2x - 3b)^2
=4x^2 - 12cx + 9c^2 + 4x^2 - 12ax + 9x^2 + 4x^2 - 12bx + 9b^2
=12x^2 - 12x(a + b + c) + 9(a^2 + b^2 + c^2)
=12x^2 - 12x^2 + 9(a^2 + b^2 + c^2) =9(a^2 + b^2 + c^2) =9m
\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
\(=\left(4a^2+4b^2+c^2+8ab-4ac+4bc\right)+\left(4b^2+4c^2+a^2+8bc-4ba-4ac\right)\)\(+\left(4c^2+4a^2+b^2+8ac-4cb-4ab\right)\)
\(=9a^2+9b^2+9c^2\)
\(=9\left(a^2+b^2+c^2\right)\)
\(=9m\)
Sửa đề: Cho \(a^2+b^2+c^2=m\)
Tính: \(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)
Giải:
Ta có: \(\left(x+y-z\right)^2=\left(x+y\right)^2-2\left(x+y\right).z+z^2=x^2+y^2+z^2+2xy-2xz-2yz\)
Ứng dụng vào bài trên:
\(A=\left[\left(2a\right)^2+\left(2b\right)^2+c^2+2\left(2a\right)\left(2b\right)-2\left(2a\right)c-2\left(2b\right)c\right]\)
\(+\left[\left(2b\right)^2+\left(2c\right)^2+a^2+2\left(2b\right)\left(2c\right)-2\left(2b\right)a-2\left(2c\right)a\right]\)
\(+\left[\left(2c\right)^2+\left(2a\right)^2+b^2+2\left(2c\right)\left(2a\right)-2\left(2c\right)b-2\left(2a\right)b\right]\)
\(=4a^2+4b^2+c^2+8ab-4ac-4bc\)
\(+4b^2+4c^2+a^2+8bc-4ba-4ca\)
\(+4c^2+4a^2+b^2+8ca-4cb-4ab\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
\(=9m\).