Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co:a^2+b^2+c^2-ab-bc-ca=0
<=>2(a^2+b^2+c^2-ab-bc-ca)=0
<=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ca+c^2)=0
<=>(a-b)^2+(b-c)^2+(a-c)^2=0
<=>a=b=c.
Ta có: \(a^2,b^2,c^2\le1\Leftrightarrow-1\le a,b,c\le1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge0\left(1\right)\)
Ta lại có: \(\frac{\left(a+b+c+1\right)^2}{2}\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+c^2+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow\frac{1+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow ab+bc+ca+a+b+c+1\ge0\left(2\right)\)
Lấy (1) + (2) vế theo vế ta được
\(abc+2\left(ab+bc+ca+a+b+c+1\right)\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=0\\c=-1\end{cases}}\) và các hoán vị của nó
2(1+a+b+c+ab+bc+ac)
=2(a^2+b^2+c^2+ab+bc+ac)
=(a^2+b^2+c^2+2ab+2bc+2ac)+2(a+b+c) +1
=(a+b+c)^2+2(a+b+c)+1
=(a+b+c+1)^2 >= 0
đúng thì cho 1 tíck nhé
b: \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-c)^2+(a-b)^2+(b-c)^2=0
=>a=b=c
c: \(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)=0\)
=>(a-b)^2+(a-c)^2+(b-c)^2=0
=>a=b=c
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
\(\sum\dfrac{a}{b^2+bc+c^2}\ge\dfrac{\left(a+b+c\right)^2}{ab^2+abc+ac^2+bc^2+abc+ba^2+ca^2+abc+cb^2}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}=\dfrac{a+b+c}{ab+bc+ac}\)
ta áp dụng cô-si la ra
a^2+b^2+c^2 ≥ ab+ac+bc
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1)
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2)
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3)
cộng (1) (2) (3) theo vế:
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc)
=> a^2 + b^2 + c^2 ≥ ab+ac+bc
dấu = khi : a = b = c
Ta co:a^2+b^2+c^2-ab-bc-ca=0
<=>2(a^2+b^2+c^2-ab-bc-ca)=0
<=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0
<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ca+c^2)=0
<=>(a-b)^2+(b-c)^2+(a-c)^2=0
<=>a=b=c
a = b = c
chuc hok gioi