\(\frac{1}{a^{2015}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

\(a^2+a+1=0\)

\(\Leftrightarrow a^2+2.a.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}=0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2=-\frac{3}{4}\)      ( Vô nghiệm vì \(\left(a+\frac{1}{2}\right)^2\ge0\)

Vậy không tồn tại số a sao cho \(a^2+a+1=0\)nên Biểu thức A không tồn tại

3 tháng 8 2017

mình ko bít

3 tháng 8 2017

mà mình mới lớp 6 thui ahihi

30 tháng 8 2015

câu 2  :

ab+  bc + ca = 2015 

=> 2015 +a^2 = a^2 + ab + bc + ca 

=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)

Tương tự : 2015+b^2 = ( b + c )(b +a )

 2015 + c^2 = ( c + a )(c + b ) thay vào ta có :

( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương 

30 tháng 8 2015

Câu 1 ) :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)

=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)

=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)

=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0 

=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0

=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)

=> 2015 - z =  0 hoặc 2015 -x = 0 hoặc 2015 - y = 0 

=> z = 2015 hoặc x= 2015 hoặc y = 2015 

Vậy trong ba số có ít nhất 1 số bằng 2015 

30 tháng 10 2016

lớp 6 mà

30 tháng 10 2016

lớp 9 đó

6 tháng 9 2015

Theo giả thiết ta có \(\left(a_1^2+\cdots+a_{2015}^2\right)-2\cdot2015\cdot\left(a_1+\cdots+a_{2015}\right)\le2015^3-2\cdot2015^3+1=1-2015^3\), do vậy mà \(\left(a_1-2015\right)^2+\cdots+\left(a_{2015}-2015\right)^2\le1\), vì các số bên vế trái đều là các số tự nhiên nên trong các số này có 2014 số bằng 0 số còn lại bằng 0 hoặc bằng 1. Thành thử trong 2015 số tự nhiên \(a_1,\ldots,a_{2015}\) có \(2014\) số bằng \(2015\) số còn lại có thể bằng \(2015\), có thể \(2014\)  hoặc \(2016\). Tuy nhiên hai trường hợp sau không thoả mãn. Vậy tất cả các số bằng \(2015\)

31 tháng 10 2016

a\ ta có: \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(S+3=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)

=\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)(dạng khác của bđt co shi)

\(S+3\ge\left(a+b+c\right)\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)\(S\ge\frac{9}{2}-3=\frac{3}{2}\)

dấu = xảy ra khi a+b=b+c=c+a hay a=b=c=\(\frac{2015}{3}\)

vật GTNN của S=3/2 khi a=b=c=2015/3

b\ ta có: A=a3+b3+ab=(a+b)(a2-ab+b2)+ab mà a+b=1

→A=a2-ab+b2+ab=a2+b2

lại có: \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)(bn tự cm công thức nhé hoặc thay a=1-b vào cũng đc)

do đo \(A\ge\frac{1}{2}\) dấu = xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\Rightarrow a=b=\frac{1}{2}}\)

18 tháng 9 2016

Ta có a2 + b = 4 <=> 2ab = (a + b)2 - 4

Ta có \(\frac{ab+a+b+2}{a+b+2}=1+\frac{ab}{a+b+2}\)

\(1+\frac{\left(a+b\right)^2-4}{2\left(a+b+2\right)}\)

\(1+\frac{a+b-2}{2}\)(1)

Mà \(\frac{\left(a+b\right)^2}{2}\le a^2+b^2=4\)

<=> a + b \(\le\)\(2\sqrt{2}\)

Từ đó <=> (1) \(\le\)\(\sqrt{2}\)

Từ đó => P \(\sqrt[4030]{2}\)

Đạt được khi a = b = \(\sqrt{2}\)