K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2022

Bổ sung: \(a\ne b\)

\(a^2+3a=b^2+3b\)

\(\Rightarrow a^2-b^2+3a-3b=0\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)+3\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(a+b+3\right)=0\)

- Vi \(a\ne b\) nên ta chọn \(a+b+3=0\) hay \(a+b=-3\)

- Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=-3.\left[\dfrac{3}{2}\left(a^2+b^2\right)-\dfrac{1}{2}\left(a^2+2ab+b^2\right)\right]\)

\(=-3.\left[\dfrac{3}{2}\left(2-3a+2-3b\right)-\dfrac{1}{2}\left(a+b\right)^2\right]\)

\(=-3.\left[\dfrac{3}{2}\left[4-3.\left(-3\right)\right]-\dfrac{1}{2}.9\right]\)

\(=-3.\left(\dfrac{3}{2}.13-\dfrac{9}{2}\right)=-3.15=-45\left(đpcm\right)\)

 

 

 

 

5 tháng 8 2016

a)  Ta có : a^2+3a=b^2+3b \(\Leftrightarrow\)(a^2 - b^2) + 3(a - b) = 0 \(\Leftrightarrow\)(a - b)(a+b+3)=0 \(\Leftrightarrow\)a+b+3=0 (vì a,b phan biet nen a - b \(\ne\)0)

\(\Leftrightarrow\)a+b=-3 (đpcm)

b)  Ta có : a^2 +2ab +b^2 =9 (vì a+b=-3) (1)

  • Vì a^2+3a=b^2+3b=2 \(\Rightarrow\)a^2+b^2+3(a+b)=4 \(\Rightarrow\)a^2+b^2=13 (2)     

Lấy (1) trừ (2) suy ra : 2ab=-4 \(\Leftrightarrow\)-ab=2 (3)

Lấy (2) cộng (3) suy ra : a^2-ab+b^2=15

Do đó : a^3+b^3=(a+b)(a^2-ab+b^2)=(-3)*15=-45(đpcm)

5 tháng 8 2016

cảm ơn nha

1 tháng 8 2019

:]] đề sai rồi:

\(a^3+3a=b^3+3b\)

\(\Leftrightarrow\left(a^3-b^3\right)+\left(3a-3b\right)=0\)

\(\Leftrightarrow\left(a-b\right).\left(a^2+ab+b^2+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a^2+ab+\frac{b^2}{4}\right)+\frac{3}{4}b^2+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2=-3\left(\text{loại vì }VP\ge0,\text{VT}< 0\right)\end{cases}}}\)

Nếu a+b=-3 (như trên), mà a=b => a=b=-3/2. Thao -3/2 vào a3+3a khác 2 :))) 

4 tháng 8 2019

Đề ko sai đâu Boul

19 tháng 7 2021

Trả lời:

a, ( a + b )3 + ( a - b )3 

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3

= 2a3 + 6ab2

= 2a ( a2 + 3b2 )  (đpcm)

b, Sửa đề: ( a + b )3 - ( a - b )3

= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b ( b2 + 2a2 ) 

19 tháng 7 2021

Trả lời:

( câu b vừa nãy tớ làm nhầm )

b, ( a + b )3 - ( a - b )3 

= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b ( b2 + 3a2 )  (đpcm)

11 tháng 2 2018

Bổ sung phần chia hết cho 2 này:

\(a^3+3a^2\)

\(=a^2\left(a+3\right)\)

Xét a chẵn và a lẻ

\(\Rightarrow a^3+3a^2⋮2\)

Tương tự \(b^3+3b^2⋮2\)

                \(c^3+3c^2⋮3\)

10 tháng 2 2018

ta có A=\(a^3+b^3+c^3-3abc+3\left(a^2+b^2+c^2\right)+3abc\)

=\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc+3\left(a^2+b^2+c^2\right)⋮3\left(\forall a+b+c⋮3\right)\)

^_^

13 tháng 4 2020

ta có \(\sqrt[3]{3a+1}=\frac{\sqrt[3]{\left(3a+1\right)2.2}}{\sqrt[3]{4}}\le\frac{3a+1+2+2}{3\sqrt[3]{4}}=\frac{3a+5}{3\sqrt[3]{4}}\)

tương tự \(\hept{\begin{cases}\sqrt[3]{3b+1}\le\frac{3b+5}{3\sqrt[3]{4}}\\\sqrt[3]{3c+1}\le\frac{3c+5}{3\sqrt[3]{4}}\end{cases}}\)

\(=>P\le\frac{3\left(a+b+c\right)+15}{3\sqrt[3]{4}}=\frac{6}{\sqrt[3]{4}}=3\sqrt[3]{2}\)