K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 7 2023

Lời giải:
$A=2+2^2+2^3+...+2^{60}$

$2A=2^2+2^3+2^4+...+2^{61}$

$\Rightarrow 2A-A=2^{61}-2$

Hay $A=2^{61}-2$

Ta thấy: 

$2\equiv -1\pmod 3$

$\Rightarrow 2^{61}\equiv (-1)^{61}\equiv -1\pmod 3$

$\Rightarrow A=2^{61}-2\equiv -1-2\equiv -3\equiv 0\pmod 3$

Vậy $A\vdots 3$

Mặt khác:
$2^3\equiv 1\pmod 7$

$\Rightarrow 2^{61}=(2^3)^{20}.2\equiv 1^{20}.2\equiv 2\pmod 7$

$\Rightarrow A=2^{61}-2\equiv 2-2\equiv 0\pmod 7$ 

Vậy $A\vdots 7$

Lại có:

$2^4\equiv 1\pmod 5$

$\Rightarrow 2^{61}=(2^4)^{15}.2\equiv 1^{15}.2\equiv 2\pmod 5$

$\Rightarrow A=2^{61}-2\equiv 2-2\equiv 0\pmod 5$

Vậy $A\vdots 5$ 

Ta có đpcm.

10 tháng 1 2022

\(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3.\left(2+2^3+...+2^{59}\right)\) ⋮ 3

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

12 tháng 10 2021

giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5

b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60

c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7

29 tháng 10 2021

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

28 tháng 10 2022

câu a của bạn thiếu 2 mũ 2

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

9 tháng 12 2023

             A = 1 + 2 + 22 + 23 + ... + 22019

   Xét dãy số: 0; 1; 2; 3;...;2019 dãy số trên là dãy số cách đều với khoảng cách là:

                        2 - 1 = 1

Số số hạng của dãy số trên là:

                      (2019 - 0) :  1 + 1 = 2020 (số hạng)

Vì 2020 : 2 = 1010  nên nhóm hai số hạng liên tiếp của A vào nhau ta được A: 

A = 1 + 2 + 22 + 23 +...+ 22019

A = (1 + 2) + (22 + 23) + ... + (22018 + 22019)

A = 3 + 22.( 1 + 2) + .... + 22018.(1 + 2)

A = 3. + 22.3 + .... + 22018.3

A = 3.( 1 + 22 + ... + 22018)

Vì 3 ⋮ 3 ⇒ A = 3.(1 + 22 + ... + 22018) ⋮ 3

Vì 2020 : 3  = 673 dư 1 nên nhón 3 hạng tử liên tiếp của A thành một nhóm thì A là tổng của 1 và 673 nhóm khi đó 

A = 1 + ( 2 + 22 + 23) + (24 + 25 + 26) + ... + (22017 + 22018 + 22019)

A = 1 + 2.( 1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 22017.(1 + 2 + 22)

A = 1 + 2.7 + 24.7 + ... + 22017 . 7

A = 1 + 7.(2 + 24 + .... + 22017)

Vì 7 ⋮ 7; 1 không chia hết cho 7 nên A không chia hết cho 7

Việc chứng minh A ⋮ 7 là điều không thể xảy ra.