Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)
\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)
\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)
\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)
1.
ĐK \(a\ge0;a\ne1\)
Ta có \(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
\(=\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2+4\sqrt{a}\left(a-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{a-1}{\sqrt{a}}\)
\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
\(=\frac{4a\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}=4a\)
2. Với \(a=\frac{\sqrt{6}}{2+\sqrt{6}}\Rightarrow A=\frac{4\sqrt{6}}{2+\sqrt{6}}\)
Để \(\sqrt{A}>A\Rightarrow\sqrt{4a}>4a\Rightarrow2\sqrt{a}-4a>0\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)>0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{a}>0\\1-2\sqrt{a}>0\end{cases}\Rightarrow\hept{\begin{cases}a>0\\a>\frac{1}{4}\end{cases}\Rightarrow}a>\frac{1}{4}}\)
Vậy để \(\sqrt{A}>A\)thì \(a>\frac{1}{4};a\ne1\)
xin 1 tích và t sẽ làm " đúng 100%
ok b ơi b làm nhanh hộ mình với mình đang cần gấp