Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Bài giải:
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\)
\(\Rightarrow\frac{1}{2}A=A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1000}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\right)\)
\(\Rightarrow\frac{1}{2}A=1-\frac{1}{1002}=\frac{1001}{1002}\Rightarrow A=\frac{2002}{1002}=\frac{1001}{501}\)
Vậy \(A=\frac{1001}{501}\)
\(C=\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{1999}\right)}\)=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{1001.1002.1003....2999}{1.2.3...1999}}\)
=> \(C=\frac{\frac{2000.2001.2002....2999}{1.2.3...1000}}{\frac{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}}\)
=> \(C=\frac{2000.2001.2002....2999}{1.2.3...1000}.\frac{\left(1.2.3...1000\right).\left(1001.1002...1999\right)}{\left(1001.1002.1003....1999\right).\left(2000.2001.2002...2999\right)}=1\)
Đáp số: C=1
\(a,=\left(\frac{9}{16}-\frac{10}{16}+\frac{12}{16}\right):\frac{11}{32}\)
\(=\frac{11}{16}:\frac{11}{32}\)
\(=\frac{11}{16}.\frac{32}{11}\)
\(=2\)
a) để 5/n-1 là số nguyên thì 5 chia hết cho n-1
=> n-1 thuộc Ư(5)=( 1, -1, 5, -5)
ta có
n-1=1=>n=2
n-1=-1=>n=0
n-1=5=>n=6
n-1=-5=>n=-4
mà n là số tự nhiên => n thuộc 2,0,6
máy mik bị lỗi bàn phím nên phải gõ ngoặc khác thay thế TvT, sorry nghen
b) M=(1-1000/2016) *...*(1-2016/2016)*(1-2017/2016)
=>M=(1-1000/2016)*.....*0*(1-2017/2016)
=>M=0
\(A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)+\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)+\left[\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)-\left(\frac{1}{1000}+\frac{1}{1001}+...+\frac{1}{2019}\right)\right]\)
\(A-B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)-0\)
\(A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\)
\(\text{Thay }A-B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\text{ ta có : }\)
\(\left(A-B-1\right)^{1000}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}-1\right)^{1000}\)
\(=\left(1-1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)^{1000}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{999}\right)^{1000}\)