K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 8 2020

Ta có:

\(1-a_1\ge a_2+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_2a_3...a_n}\)

\(1-a_2\ge a_1+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_1a_3...a_n}\)

....

\(1-a_n\ge a_1+a_2+...+a_{n-1}\ge\left(n-1\right)\sqrt[n-1]{a_1a_2...a_{n-1}}\)

Nhân vế với vế:

\(\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)\ge\left(n-1\right)^n.a_1a_2...a_n\)

\(\Leftrightarrow\frac{a_1a_2...a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)

Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{n}\)

26 tháng 5 2017

cái này là bổ đề tui c/m rùi mà =="

28 tháng 5 2018

ÁP DỤNG BĐT Cauchy ta có : 

\(\text{a}_1+\text{a}_2+...+\text{a}_n\ge n^n\sqrt{\text{a}_1.\text{a}_2....\text{a}_n}\)  (1) 

\(\frac{1}{\text{a}_1}+\frac{1}{\text{a}_2}+...+\frac{1}{\text{a}_n}\ge n^n\sqrt{\frac{1}{\text{a}_1}\cdot\frac{1}{\text{a}_2}\cdot...\cdot\frac{1}{\text{a}_n}}\)(2) 

Nhân (1) và (2) vế với vế tương ứng ta có được BĐT (*) 

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}\text{a}_1=\text{a}_2=...=\text{a}_n\\\frac{1}{\text{a}_1}=\frac{1}{\text{a}_2}=...=\frac{1}{\text{a}_n}\end{cases}}\)

                             \(\Leftrightarrow\text{a}_1=\text{a}_2=...=\text{a}_n\)

6 tháng 3 2021

a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).

Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).

Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).

Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).

Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).

CM :\(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)

Áp dụng BĐT Cô si cho 2 số \(a_1\) và 1 :

\(a_1+1\ge2\sqrt{a_1}\ge0\)

Tương tự cũng có :

\(a_2+1\ge2\sqrt{a_2}\ge0\)

........

\(a_n+1\ge2\sqrt{a_n}\ge0\)

=> \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\sqrt{a_1.a_2...a_n}=2^n\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a_1=a_2=...=a_n=1\)

2 tháng 10 2019

Mik sửa lại đề thành \(\left(1+a_1\right)+\left(1+a_2\right)+...+\left(1+a_n\right)\ge2^n\)

Áp dụng bất đẳng thức Cô - si với n số dương ta được 

\(a_1+a_2+...+a_n\ge n\sqrt[n]{a_1.a_2....a_n}\)

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\ge n\sqrt[n]{\frac{1}{a_1}.\frac{1}{a_2}....\frac{1}{a_n}}\)

Suy ra \(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2.\sqrt[n]{1}=n^2\)

(dấu "=" xẩy ra <=> a1=a2 =...=an)

11 tháng 9 2017

Theo bat dang thuc cauchy ta co

a1+a2+...+an lon hon hoc bang n.can bac n cua (a1.a2....an) (1)

1/a1+1/a2...1/an lon hon hoac bang n.1/can bac n cua (a1.a2...an) (2)

Nhan 2 ve (1) va (2) ta duoc

(a1+a2+...+an).(1/a1+1/a2+...1/an) lon hon hoac bang n tren ​​2

=>1/a1+1/a2+...1/an lon hon hoac bang n tren 2/a1+a2+...+an

Dau bang xay ra khi a1=a2=...=an

Mk giai co hieu ko

15 tháng 4 2018

mày bị điên đứa nào thích thì mà đứa nào chơi truy kích cho tao nick