K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

xin loi ban minh cung muon giai giup ban lam nhung minh moi hoc lop 5 thoi

27 tháng 12 2015

mình giống bạn sakura - sorry  nha

19 tháng 4 2018

trả lời giúp mình với

19 tháng 11 2021

tra loi giup minh voi 644 chia 14

13 tháng 7 2016

fdhjsbfdbzù

17 tháng 4 2015

Đặt S= | a1 + a2 | + |a2 + a3| +  |a3 + a4| + .... + | a(n) + a1 | 

Ta có: S - 2.(a1+a2+...+a(n))= [| a1 + a2 | -(a1+a2)]+ [|a2 + a3| -(a2+a3)]+ [ |a3 + a4|-(a3+a4)] + .... +[ | a(n) + a1 | -(a(n)+a1)]

Mặt khác ta dễ dàng CM được: |A| - A  luôn là một số chẵn nên|a(i)+a(j)|-[a(i)+a(j)] là một số chẵn.

 nên  S - 2.(a1+a2+...+a(n)) là một số chẵn mà 2.(a1+a2+...+a(n)) là một số chẵn =>S là một số chẵn.

So sánh ta thấy S là một số chẵn mà 2015 là một số lẻ.

Vậy không có các số nguyên a(i) thỏa mãn:  | a1 + a2 | + |a2 + a3| +  |a3 + a4| + .... + | a(n) + a1 | = 2015

 

3 tháng 1 2017

làm tính trừ có giống như vầy ko ?

3 tháng 4 2018

Ta có 15 = 1 + 2 + 3 + 4 + 5 

Vì a1 là số nguyên dương nên \(a_1+a_2\ge3\)điều trên xảy ra khi \(a_1=1\)và \(a_2=a_1+1\)

Tương tự với \(a_1+a_2+a_3+a_4+a_5=a_1+\left(a_1+1\right)+...+\left(a_1+a_4\right)\)

\(=5a_1+10⋮15\)

Theo nguyên lý Dirichlet thì trong 2015 số nguyên dương sẽ tồn tại ít nhất 134 số chia hết cho 15 nếu \(a_1=15\)

Nếu các số nguyên dương trên có giá trị tương đương nhau thì \(a_1+a_2+...+a_{2015}=2015a_n\)

Vậy trong nguyên lý Dirichlet thì có thể tồn tại ít nhất 134 cặp số có tổng chia hết cho 15 với \(a_n\)nhỏ nhất là 1 

3 tháng 4 2018

ygtutr