Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên <=>2 chia hết cho n+1
hay n+1 thuộcƯ(2)
n+1=(-2;-1;1;2)
n=(-1;0;2;3)
a) Để A là phân số thì n+1 thuộc Z và n+1 khác 0
=> n khác -1, n thuộc Z thì A là phân số
b) Để A là số nguyên thì 2 chia hết cho n+1
=> n+1 thuộc 1;-1;2;-2
=> n thuộc 0;-2;1;-3
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
a, để A là phân số <=> n+6 khác 0 <=> n khác -6
b, A=n-2/n+6 =(n+6-8)/(n+6)=1- 8/(n+6)
<=> n+6 thuộc Ư(8)={-8;-4;-2;-1;1;2;4;8}
<=> n={-14;10;-8;-7;-5;-4;-2;2}
a) Để a là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)
b) \(a=\frac{n+9}{n+4}=\frac{n+4+5}{n+4}=1+\frac{5}{n+4}\)
\(a=\frac{1}{2}\Rightarrow1+\frac{5}{n+4}=\frac{1}{2}\)
\(\Rightarrow\frac{5}{n+4}=\frac{1}{2}-1=-\frac{1}{2}\)
\(\frac{5}{n+4}=\frac{5}{-10}\)
\(\Rightarrow n+4=-10\Rightarrow n=-14\)
c) Để a là số nguyên thì \(\frac{5}{n+4}+1\) có giá trị nguyên
\(\Rightarrow\frac{5}{n+4}\) có giá trị nguyên
\(\Rightarrow5⋮n+4\)
Vì \(n+4\inℤ\) nên \(n+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;1;-9\right\}\)
a, để a là phân số thì mẫu số phải khác 0
vây nên n+4 phải khác 0 suy ra n phải khác -4
b, n+9/n+4=1/2 suy ra 2n+18=n+4 suy ra 2n-n=4-18 suy ra n=-14
c, a=n+9/n+4 có g trị nguyên
suy ra n+9 chia hết n+4
suy ra n+4+5 chia hết cho n+4
suy ra 5 chia hết cho n+4 hay n+4 thuộc ư(5)
suy ra n+4 thuộc (1;5;-1;-5)
suy ra n thuộc (-3;1;-5;-9)
chúc bạn hok tốt
Giải:
a) Để A là phân số <=> n - 1 \(\ne\)0 <=> n \(\ne\)1
b) Để A là số nguyên <=> 15 \(⋮\)n - 1 <=> n - 1 \(\in\)Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}
Lập bảng:
Vậy ...