Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi chia 3 số này cho 4 đc các số dư là : 1,2,3
Suy ra gọi các số này là : 4k+1 , 4k+2, 4k+3
Tổng : 4k ( 1+2+3) = 4k . 6
Mà 4k chia hết cho 2
6 chia hết cho 2 suy ra điều phải chứng minh ( DPCM là a+b+c chia hết cho 2)
a) A = 4 + 4² + 4³ + ... + 4¹²
= 4.(1 + 4 + 4² + 4³ + ... + 4¹¹) ⋮ 4
Vậy A ⋮ 4
b) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4²) + (4³ + 4⁴) + ... + (4¹¹ + 4¹²)
= 4.(1 + 4) + 4³.(1 + 4) + ... + 4¹¹.(1 + 4)
= 4.5 + 4³.5 + ... + 4¹¹.5
= 5.(4 + 4³ + ... + 4¹¹) ⋮ 5
Vậy A ⋮ 5
c) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²
= (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4¹⁰ + 4¹¹ + 4¹²)
= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4¹⁰.(1 + 4 + 4²)
= 4.21 + 4⁴.21 + ... + 4¹⁰.21
= 21.(4 + 4⁴ + ... + 4¹⁰) ⋮ 21
Vậy A ⋮ 21
A = 2 + 2^2 + 2^3 + ... + 2^90
=> A = (2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6) + ... + (2^85 + 2^86 + 2^87 + 2^88 + 2^89 + 2^90)
=> A = (2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6) + ... + 2^84.(2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6)
=> A = 126 + ... + 2^84.126
=> A = 126.(1 + ... + 2^84)
=> A = 21.6.(1 + ... + 2^84) \(⋮\)21 (đpcm)
\(A=3+3^2+3^3+3^4+...+3^9+3^{10}\)(có 10 số)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)(có 5 nhóm)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(A=\left(1+3\right)\left(3+3^3+...+3^9\right)\)
\(A=4\left(3+3^3+...+3^9\right)⋮4\left(đpcm\right)\)
Ta có: 4;42;43;...;429;430 chia hết cho 4
Nên 4+42+43+...+429+430 chia hết cho 4
Nên A=1+4+42+...+429+430 không chia hết cho 4( vì 1 không chia hết cho 4)
Vậy A không chia hết cho 4