Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.....\frac{208}{210}=\frac{1.4.7.....208}{3.6.9.....210}\)
Mà \(1< 3,4< 6,7< 9,...,208< 210\)
\(\Rightarrow1.4.7.....208< 3.6.9.....210\)
\(\Rightarrow\frac{1.4.7.....208}{3.6.9.....210}< 1\)\(\Leftrightarrow A< 1\)
Lại có \(1< 25\)\(\Rightarrow A< 25\)
a: =-15/24-18/24+60/24
=27/24=9/8
b: =6/12-9/12-10/12-7/12=-20/12=-5/3
c: =17/2+3/7-5/3=305/42
c: =-3-2/3-10/9-25/3-5/6
=-10-19/9-5/6
=-180/18-38/18-15/18=-233/18
bài1
a) \(\dfrac{7}{6}-\dfrac{13}{12}+\dfrac{3}{4}\)
=\(\dfrac{14}{12}-\dfrac{13}{12}+\dfrac{9}{12}\)
=\(\dfrac{1}{12}+\dfrac{9}{12}\)
=\(\dfrac{10}{12}=\dfrac{5}{6}\)
bài 1
b)\(1\dfrac{1}{2}.(\dfrac{-4}{5})\) + \(\dfrac{3}{10}\)
= \(\dfrac{3}{2}.\left(-\dfrac{4}{5}\right)+\dfrac{3}{10}\)
= \(-\dfrac{6}{5}+\dfrac{3}{10}\)
=\(-\dfrac{12}{10}+\dfrac{3}{10}\)
=\(-\dfrac{9}{10}\)
Xét với mọi n > 2 , ta có \(\frac{n}{n+2}< \frac{n-1}{n}\) (vì \(n^2< n^2+n-2\))
Áp dụng : \(A=\frac{1}{3}.\frac{4}{6}.\frac{7}{9}.\frac{10}{12}...\frac{208}{210}< \frac{1}{3}.\frac{3}{4}.\frac{6}{7}.\frac{9}{10}...\frac{207}{208}\)
Suy ra : \(A^2< \frac{1.4.7.10...208}{3.6.9.12...210}.\frac{1.3.6.9...207}{3.4.7.10...208}=\frac{1}{210}.\frac{1}{3}=\frac{1}{630}< \frac{1}{625}=\left(\frac{1}{25}\right)^2\)
Do đó \(A< \frac{1}{25}\)
hiểu j chết liền
=="