Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Ta có:
\(A=\frac{2015}{2016}+\frac{2016}{2017}\)
\(B=\frac{2015+2016}{2016+2017}\)
\(=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
Mà: \(\hept{\begin{cases}\frac{2015}{2016+2017}< \frac{2015}{2016}\\\frac{2016}{2016+2017}< \frac{2016}{2017}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)
Hay \(A>B\)
vì chữ số tận cùng của 2015 là 5 nên 2015 nhân với số nào thì tận cùng vẫn là 5
2016 tận cùng là 6 nên 2016 nhân với số nào tận cùng vẫn là 6
A=5+6=11
B= tan cung la 6
AxB=11x6=66
66 ko chia het cho 5
sách 6,7,8 có 2 bài này nè. mk k bt ghi ps nên mk ko gửi đc sorry nha. Hhh
a)\(A=\frac{10^{2014}+2016}{10^{2015}+2016}=>10A=\frac{10^{2015}+20160}{10^{2015}+2016}=1+\frac{18144}{10^{2015}+2016}\left(1\right)\)
\(B=\frac{10^{2015}+2016}{10^{2016}+2016}=>10B=\frac{10^{2016}+20160}{10^{2016}+2016}=1+\frac{18144}{10^{2016}+2106}\left(2\right)\)
từ 1 zà 2
=> 10A>10B
=>A>B
b)
Gọi 3 số đó là : a) b) c)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là số nguyên
Vì a ; b ; c số tự nhiên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)là phân số
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)lớn nhất \(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}< 2\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)nhỏ nhất \(>0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Vậy 3 số tự nhiên cần tìm là : 2 ; 3 ; 6
a)
\(A=\frac{4}{6}\times10+\frac{6}{10}\times16+\frac{1}{16}\times3+\frac{1}{24}\times7+\frac{1}{28}\times5\)
\(A=\frac{20}{3}+\frac{48}{5}+\frac{3}{16}+\frac{7}{24}+\frac{5}{28}\)
\(A=\frac{11200}{1680}+\frac{16128}{1680}+\frac{315}{1680}+\frac{490}{1680}+\frac{300}{1680}\)
\(A=\frac{26433}{1680}\)
Vậy \(A=\frac{26433}{1680}\)
Mình ko bít có đúng ko nên sai đừng trách mình nhé !
\(A=\frac{7^{2011}+1}{7^{2013}+1}\)
\(7^2.A=\frac{7^{2013}+49}{7^{2013}+1}=\frac{7^{2013}+1+48}{7^{2013}+1}=\)\(\frac{7^{2013}+1}{7^{2013}+1}+\frac{48}{7^{2013}+1}=1\frac{48}{7^{2013}+1}\)
\(B=\frac{7^{2013}+1}{7^{2015}+1}\)
\(7^2.B=\)\(=\frac{7^{2015}+49}{7^{2015}+1}=\)\(\frac{7^{2015}+1+48}{7^{2015}+1}=\)\(\frac{7^{2015}+1}{7^{2015}+1}+\frac{48}{7^{2015}+1}=1\frac{48}{7^{2015}+1}\)
\(Vì\) \(1\frac{48}{7^{2013}+1}>1\frac{48}{7^{2013}+1}\)\(\Rightarrow7^2.A>7^2.B\)\(\Rightarrow A>B\)
\(Vậy\) \(A>B\)
Bài 2 nè
ta xét B trước:
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..\)\(.....+\frac{1}{2015}-\frac{1}{2016}\)
=\(\left(\frac{1}{1}+\frac{1}{3}+....+\frac{1}{2015}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{2016}\right)\)
\(=\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}\right)-\)\(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
vậy A:B\(=\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)\(:\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}\)
\(=1\)
\(A=\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+...+\left(\frac{2015}{2}+1\right)+1\)
= \(\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...\frac{2017}{2}+\frac{2017}{2017}\)
= \(2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}\)
= 2017
Chúc bạn học giỏi!
\(A=1+3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2016}\)
\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2016}-1-3-3^2-3^3-...-3^{2015}\)
\(\Rightarrow2A=3^{2016}-1\)
\(\Rightarrow A=\frac{3^{2016}-1}{2}\)
\(\Rightarrow B-A=\frac{3^{2016}}{2}-\frac{3^{2016}-1}{2}=\frac{1}{2}\)