K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2020

A= (1/31 + 1/32+ ...+ 1/40) +(1/41 +1/42 +...+ 1/50) + (1/51 +1/52 +...+1/60)

A>10/40 + 10/50 + 10/60

A> 1/4 + 1/5 + 1/6

Ta thấy 1/4 + 1/6 = 10/24> 10/25 = 2/5

suy ra A > 1/5+2/5 = 3/5 suy ra đccm

6 tháng 4 2015

Bài này cũng khó:

1/2! +2/3! +3/4! +... + 99/100! 
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!) 
=1 - 1/100! <1 

6 tháng 4 2015

Gọi số tự nhiên n. Ta có:

\(\frac{n-1}{n!}=\frac{n+1-1}{n!}=\frac{n+1}{n!}-\frac{1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\).

Thay n lần lượt bằng 2,3,...,100.Ta có A = \(\frac{1}{1!}-\frac{1}{100!}<1\Rightarrow A<1\)

29 tháng 8 2020

Bài làm:

Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)

=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)

Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)

=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)

Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)

20 tháng 2 2020

Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

            \(\frac{1}{5^2}< \frac{1}{4.5}\)

             ...

            \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)  

\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)

Vậy A<\(\frac{3}{4}\)

20 tháng 2 2020

A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)

3 tháng 12 2019

2S=2^1+2^2+...+2^203+2^204

  S=2^0+2^1+...+2^202+2^203

=>2S-S=S=2^204-1

15 tháng 3 2019

1,8 nha bn

15 tháng 3 2019

nhầm câu hỏi

6 tháng 3 2019

Câu 1:                    Giải

\(\frac{a}{b}< 1\Leftrightarrow a< b\)

\(\Leftrightarrow am< bm\)

\(\Leftrightarrow ab+am< ab+bm\)

\(\Leftrightarrow a\left(b+m\right)< b\left(a+m\right)\)

\(\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(đpcm\right)\)

Câu 2:                Giải

Ta có : \(\hept{\begin{cases}\frac{437}{564}=1-\frac{127}{564}\\\frac{446}{573}=1-\frac{127}{573}\end{cases}}\)

Vì \(\frac{127}{564}>\frac{127}{573}\) nên \(\frac{437}{564}>\frac{446}{573}\)

8 tháng 7 2019

a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)

\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)

\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)

\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)

Vậy x = 4 hoặc x = 5 hoặc x = 6 

\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)

\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)

\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)

[  ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)

_Minh ngụy_

25 tháng 9 2018

bạn ơi đề bài này ko phải dãy số cách đều với nó cũng ko có quy luật

hình như sai đề rôi

25 tháng 9 2018

Chắc vậy đây là đề của ông thầy đưa giải , mà ko tìm được cách T^T