K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Ta có : 

a = 1 + 2 + 3 + ... + n

Số lượng số của tổng a là : 

( n - 1 ) : 1 + 1 = n ( số ) 

Tổng a là : 

( n + 1 ) x n : 2 

Do ( n + 1 ) x n là 2 số liên tiếp 

=> ( n + 1 ) x n \(⋮2\)

=> ( n + 1 ) x n : 2  \(⋮1\), n > 1 

=>  a là số nguyên tố  

31 tháng 12 2018

Ta có : 

a = 1 + 2 + 3 + ... + n

Số lượng số của tổng a là : 

( n - 1 ) : 1 + 1 = n ( số ) 

Tổng a là : 

( n + 1 ) x n : 2 

Do ( n + 1 ) x n là 2 số liên tiếp 

=> ( n + 1 ) x n ⋮2

=> ( n + 1 ) x n : 2  ⋮1, n > 1 

=>  a là số nguyên tố  

21 tháng 1 2016

Giúp mình với
(-3)2+33-(-3)0
Đáp số là 35
 

21 tháng 1 2016

Vì a và b đều có Ức chung là One

31 tháng 12 2018

 Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1 
- gọi d là ước chung nếu có của cả a và b 
==> a chia hết cho d nên 8a cũng chia hết cho d 
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 ) 
==> ( b^2 - 8.a ) chia hết cho d 
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2 
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1 
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1 
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1 
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau

31 tháng 12 2018

Tau trả lời rồi

mi coi câu hỏi trước đi :(

31 tháng 12 2018

\(A=1+2+3+4+....+n=\frac{\left(n+1\right)n}{2}\)

Gọi: d=UCLN(A,B)

Ta có:

\(\hept{\begin{cases}\frac{\left(n+1\right)n}{2}⋮d\\2n+1⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n^2+n⋮d\\2n^2+n⋮d\end{cases}}\Leftrightarrow2n^2+n-n^2-n⋮d\Leftrightarrow n^2⋮d\)

\(\Leftrightarrow n^2+n-n^2⋮d\Leftrightarrow n⋮d\Leftrightarrow2n+1-2n⋮d\Leftrightarrow d=1\)

Vậy: A và B là 2 số nguyên tố cùng nhau 

26 tháng 2 2017

Ta có: a = 1+2+3+...+n

             = (n+1)(n-1+1)

             = (n+1)n

Gọi UCLN(n(n+1),2n+1) = d

=> n(n+1) chia hết cho d

 và    2n+1 chia hết cho d

Không biết nữa

17 tháng 8 2016

Ta có : \(a=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) , b = 2n+1

Gọi ƯCLN(a,b)=d (\(d\ge1\))

Ta có : \(\begin{cases}\frac{n\left(n+1\right)}{2}⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}n\left(n+1\right)⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}4n^2+4n⋮d\\4n^2+4n+1⋮d\end{cases}\)

=> \(\left(4n^2+4n+1\right)-\left(4n^2+4n\right)⋮d\) hay \(1⋮d\)

=> \(d\le1\) mà \(d\ge1\Rightarrow d=1\)

=> đpcm

17 tháng 8 2016

Vì ước chung của 2 số đó bằng 1