K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2015

B = 1.(1+1) + 2.(2+1) + 3.(3+1) +...+ 14.(14 +1) = (12 + 22 + 32 +...+142 ) + (1+2+3+...+14)

=> B - A = (1+2+3+....+14) - 152 = [(1+14).14 : 2] - 225 = -120

21 tháng 3 2023

 

chi tiết hơn được ko bạn?

 

14 tháng 1 2018

cho bài kham khảo nè :

A=1.2+2.3+3.4+4.5+...+2017.2018
=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3
3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018
3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)
=> 3A=2017.2018.2019 => \(A=\frac{2017.2018.2019}{3};B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)

Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018
=> 2017.2018.2019<2018.2018.2018
=> A<B

thank nha

14 tháng 1 2018

A=1.2+2.3+3.4+...+2017.2018

3A=1.2.3+2.3.3+3.4.3+...+2017.2018.3

3A=1.2.3+2.3.(4−1)+3.4.(5−2)+...+2017.2018.(2019−2016)

3A=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2017.2018.2019−2016.2017.2018

⇒3A=2017.2018.2019

⇒A=2017.2018.20193

A=2017.2018.20193;B=201833=2018.2018.20183

A=2739315938;B=2739316611

⇒A<B

23 tháng 11 2017

A=1.2+2.3+3.4+4.5+...+2017.2018

=> 3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2017.2018.3

3A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+...+2017.2018.(2019-2016)

3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2017.2018.2019-2016.2017.2018

3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+2017.2018.2019)-(1.2.3+2.3.4+3.4.5+...+2016.2017.2018)

=> 3A=2017.2018.2019  => \(A=\frac{2017.2018.2019}{3}\);  \(B=\frac{2018^3}{3}=\frac{2018.2018.2018}{3}\)

Ta có: 2017.2019=2017(2018-1)=2017.2018+2017<2017.2018+2018=2018(2017+1)=2018.2018

=> 2017.2018.2019<2018.2018.2018

=> A<B

16 tháng 11 2018

Bui The Hao lam dung roi

mk cung dang can bai nay

Thanks vi da dang honganh

21 tháng 3 2016

B-A=1.(2-1)+2.(3-2)+...+15(15-14)=1+2+..+15=16.15/2=120

k nha

\(A=1\cdot2+2\cdot3+...+151\cdot152\)

\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)

\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)

\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)

\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)

\(=151\cdot76+151\cdot7676=1170552\)

\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)

\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)

\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)

\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)

\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)

\(=4\left[506\cdot1013+345990150\right]\)

\(=1386010912\)

\(M=1^2+2^2+...+2024^2\)

\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)

\(=2024\cdot2025\cdot\dfrac{4049}{6}\)

=2765871900

\(N=1^3+2^3+...+100^3\)

\(=\left(1+2+3+...+100\right)^2\)

\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)

\(=\left[50\cdot101\right]^2=5050^2\)

\(Q=1^3+2^3+...+2024^3\)

\(=\left(1+2+3+...+2024\right)^2\)

\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)

\(=\left[1012\left(2024+1\right)\right]^2\)

\(=2049300^2\)

23 tháng 11 2017

\(A=1.2+2.3+3.4+...+2017.2018\)

\(3A=1.2.3+2.3.3+3.4.3+...+2017.2018.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2017.2018.\left(2019-2016\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2017.2018.2019-2016.2017.2018\)

\(\Rightarrow3A=2017.2018.2019\)

\(\Rightarrow A=\dfrac{2017.2018.2019}{3}\)

\(A=\dfrac{2017.2018.2019}{3};B=\dfrac{2018^3}{3}=\dfrac{2018.2018.2018}{3}\)

\(A=2739315938;B=2739316611\)

\(\Rightarrow A< B\)