K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

6 tháng 8 2015

vậy thôi cám ơn bạn nhaaaaaaa!

14 tháng 4 2016

mink cũng đag cần bài này

24 tháng 6 2020

\(B=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{1}{99}\right)+1=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{100}\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

24 tháng 8 2015

AI MUỐN KẾT BẠN VỚI MÌNH KHÔNG VẬY ?

24 tháng 8 2015

ố 29 phút trước tui làm gì lên

17 tháng 9 2017

a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là: (101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là : (101-100).50+1=51.Vậy A=5151:51=101 

b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0

31 tháng 12 2018

a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là:

(101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:

101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là :

(101-100).50+1=51.Vậy A=5151:51=101 

b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0

15 tháng 2 2016

101 + 100 + ... + 2 + 1 = 101x102/2 = 101x51 = 5151 
101 - 100 + 99 - .. + 1 = ( 101 -100 ) + ( 99 - 98 ) + ... + ( 3 - 2 ) + 1 = 1 + 1 + 1 + ... + 1 ( 51 số ) = 51 
suy ra C = 5151/51 = 101 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

3737x43 - 4343x36 = 37x101x43 - 43x101x36 = 43x101 = 4343 
2 + 4 + 6 +... + 100 = 2x( 1 + 2 + ... + 50 ) = 2x50x51/2 = 50x51 = 2550 

vậy D = 4343/2550 

15 tháng 2 2016

b,D = 4343/2550

7 tháng 9 2017

\(A=\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+\frac{4}{96}+...+\frac{98}{2}+\frac{99}{1}\)

\(A=1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{97}+1\right)+\left(\frac{4}{96}+1\right)+...+\left(\frac{98}{2}+1\right)\)

\(A=\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+\frac{100}{96}+...+\frac{100}{2}\)

\(A=100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=100\)

13 tháng 12 2015

Bạn giỏi bạn làm đi đã ngu zồi thích tỏ ra minh ngu hơn. Bạn sợ bạn nếu ko nói câu đấy người ta tưởng bạn khôn chắc

5 tháng 8 2017

Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là:    ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)