Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 1/2 < 2/3 ; 3/4<4/5 ; ............ ; 99/100<100/101
=> 1/2.3/4.......99/100 < 2/3.4/5.........100/101
=> M<N
b, M.N = 1/2.3/4.4/5......99/100.2/3.4/5.5/6......100/101
M.N = 1/2.2/3.3/4.4/5.............99/100.100/101
M.N = 1/101
c, Vì M<N nên M.M < M.N Hay M.M < 1/101 < 1/100
hay M.M < 1/10 . 1/10
=> M < 1/10 (Đpcm)
a) Ta có M.N = 1/2.2/3.3/4.4/5....99/10.10/101 = 1/101
b) Xét M và N đều gồm 50 thừa số mà:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> M < N
c) Do M < N nên => M.M < M.N (Nhân 2 vế với M)
=> M.M < 1/101 (Vì M.N = 1/101 theo cma)
Mặt khác 1/101 < 1/100
=> M.M < 1/100 = 1/10.1/10
=> M < 1/10
a, ta xét:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.....
\(\frac{99}{100}< \frac{100}{101}\)
=>\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
hay:A<B(đpcm)
b,\(A.B=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)
\(=\frac{1.2.3....100}{2.3.4....101}=\frac{1}{101}\)
c,vì A<B (theo phần a)
=>A.A<B.A
Mà B.A=\(\frac{1}{101}\)
=>A2<101
Mà A2=\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{101}\)<\(\frac{1}{100}=\frac{1}{10^2}\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{10^2}\)
=>\(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}< \frac{1}{10}\)
Hay A<\(\frac{1}{10}\)
Bài 1:
\(\dfrac{5}{x} - \dfrac{y}{3} =\dfrac{1}{6}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{y}{3}=\dfrac{5}{x}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{2y}{6}=\dfrac{5}{x}\)
\(\Rightarrow1+\dfrac{2y}{6}=\dfrac{5}{x}\)
\(\Rightarrow x.\left(1+2y\right)=30\)
Vì \(2y\) chẵn nên \(1+2y\) lẻ
\(\Rightarrow1+2y\in\left\{\pm1;\pm3;\pm5;\pm30\right\}\)
\(\Rightarrow x\in\left\{\pm10;\pm30;\pm6;\pm2\right\}\)
Bài 2:
\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{\left(2n-2\right).2n}\)
\(=\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{\left(2n-2\right).2n}\right).\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)
\(=\dfrac{1}{4}-\dfrac{1}{2n.2}< \dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(đpcm\right)\)
Ta có:
M=\(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)
M=\(\frac{1.3....99}{2.4....100}\)
Lại có:
N=\(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)
N=\(\frac{2.4....100}{3.5....101}\)
\(\Rightarrow\)M.N=\(\frac{1.2.3......99.100}{2.3.4......100.101}\)
\(\Rightarrow\)M.N=\(\frac{1}{101}\)