K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sửa đề: A=1+2+2^2+...+2^2007

a: \(2\cdot A=2+2^2+2^3+...+2^{2008}\)

b: \(2\cdot A=2^{2008}+2^{2007}+...+2^3+2^2+2\)

\(A=2^{2007}+2^{2006}+...+2+1\)

=>\(2A-A=2^{2008}-1\)

=>\(A=2^{2008}-1\)

1 tháng 9 2023

kh sai đề-.-

 

4 tháng 8 2018

Ta có : A = 1 + 2 + 2+ 23 + ...... + 22007

=> 2A = 2 + 2+ 23 + ...... + 22008

b) Suy ra : 2A - A = 22008 - 1

=> A = 22008 - 1

Vậy đpcm

4 tháng 8 2018

a) ta có: A = 1 + 2^1 + 2^2 + 2^3 + ...+ 2^2007

=> 2A = 2 + 2^2+2^3+2^4+...+2^2008

b) ta có: 2A = 2 + 2^2 + 2^3 + 2^4+...+2^2008

=> 2A-A = 2^2008 - 1

A = 2^2008 - 1

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

chịuiuiuiuiuiuiuiuiuiuiuiu

30 tháng 5 2019

\(A=1+2^1+2^2+...+2^{2007}\)

\(\Rightarrow2A=2+2^2+...+2^{2008}\)

\(\Rightarrow2A-A=\left(2+2^2+...+2^{2008}\right)-\left(1+2+...+2^{2007}\right)\)

\(\Rightarrow A=2^{2008}-1\)

30 tháng 5 2019

\(A=1+3+...+3^7\)

\(\Rightarrow3A=3+3^2+...+3^8\)

\(\Rightarrow3A-A=\left(3+3^2+...+3^8\right)-\left(1+3+...+3^7\right)\)

\(\Rightarrow2A=3^8-1\)

\(\Rightarrow A=\frac{3^8-1}{2}\)

4 tháng 2 2018

1/2A=2^1+2^2+2^3+...+2^2006

2/ Mà A=1+2^1+2^2+...+2^2005

=>2A-A=(2^1+2^2+2^3+...+2^2006)-(1+2^1+2^2+...+2^2005)

A=2^2006-1

Tk mình nha bn !

31 tháng 3 2016

A.2=2 +2^2+2^3+...+2^6

b,A.2-A=(2+2^2+2^3+...+2^6)-(1+2+2^2+...+2^5)

A=2^6-1

26 tháng 8 2021

Trả lời:

a, \(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(\Rightarrow2A=2\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)

b, Ta có: 

\(2A-A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-2^3-...-2^{2007}\)

\(\Rightarrow A=\left(2-2\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+...+\left(2^{2007}-2^{2007}\right)+2^{2008}-1\)

\(\Rightarrow A=2^{2008}-1\) (đpcm)

Cho A= 1 + 2^1 + 2^2 + 2^3 + ....... + 2^2007

a) Tính 2A

suy ra 2A= 2 + 2^2 + 2^3 + 2^4 + ....... + 2^2008

b) Chứng minh A = 2^8 - 1

đang nghĩ b 

14 tháng 12 2019

\(a.\) \(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(\Rightarrow2A=2.\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)

\(b.\)Sai đề rồi, sửa lại:

Chứng minh: \(A=2^{2008}-1\)

C/m:    \(2A=2+2^2+2^3+2^4+...+2^{2008}\)

\(\Rightarrow A=2+2^2+2^3+2^4+...+2^{2008}-\left(1+2^1+2^2+2^3+...+2^{2007}\right)\)

\(\Rightarrow A=2^{2008}-1\)\(\left(đpcm\right)\)

Theo mk lak vậy !