K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Hỏi đáp Toán

21 tháng 10 2019

3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

24 tháng 3 2019

\(B=1+2+3+...+n\Rightarrow2B=n\left(n+1\right)\)

\(A=1^{2005}+2^{2005}+3^{2005}+...+n^{2005}\)

\(\Rightarrow2A=\left(1^{2005}+n^{2005}\right)+\left[2^{2005}+\left(n-1\right)^{2005}\right]+...+\)\(\left[\left(n-1\right)^{2005}+2^{2005}\right]+\left(n^{2005}+1^{2005}\right)\)

Các biểu thức trong dấu ngoặc đều chia hết cho n + 1 nên:

\(2A⋮\left(n+1\right)\)                      (1)

Lại có: \(2A=\left[1^{2005}+\left(n-1\right)^{2005}\right]+\left[2^{2005}+\left(n-2\right)^{2005}\right]+...+\) \(\left[\left(n-1\right)^{2005}+1^{2005}\right]+2n^{2005}\)

Các biểu thức trong dấu ngoặc đều chia hết cho n nên: 

\(2A⋮n\)       (2)

Vì n và n + 1 là 2 số nguyên tố cùng nhau nên từ (1)(2) \(\Rightarrow2A⋮n\left(n+1\right)=2B\)

Vậy \(A⋮B\)

a: \(\Rightarrow x^3-2x^2+3x^2-6x-5x+10+n-10⋮x-2\)

=>n-10=0

=>n=10

b: \(A=5n\left(n^2+3n+2\right)=5n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là 3 số liên tiếp

nên n(n+1)(n+2) chia hết cho 3!=6

=>A chia hết cho 30