K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 11 2019

Bài này có vài cách giải, do M thuộc Oy nên tọa độ đơn giản, dùng công thức khoảng cách là dễ nhất:

Gọi \(M\left(0;a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;a-2\right)\\\overrightarrow{MB}=\left(2;5-a\right)\end{matrix}\right.\)

\(\Rightarrow T=AM+BM=\sqrt{1^2+\left(a-2\right)^2}+\sqrt{2^2+\left(5-a\right)^2}\)

\(\Rightarrow T\ge\sqrt{\left(1+2\right)^2+\left(a-2+5-a\right)^2}=3\sqrt{2}\)

\(\Rightarrow T_{min}=3\sqrt{2}\) khi \(\frac{a-2}{1}=\frac{5-a}{2}\Rightarrow a=3\Rightarrow M\left(0;3\right)\)

27 tháng 8 2022

tại sao AM = -1 và a-2 bạn nhỉ

 

NV
11 tháng 5 2019

Bài 1:

Do hệ số \(a>0\Rightarrow y_{max}\) tại 1 trong 2 đầu mút của đoạn xét

\(-\frac{b}{2a}=1\); ta có \(1-\left(-1\right)>2-1\) nên \(y\) đạt max tại \(x=-1\)

\(y\left(-1\right)=1+2+m^2+m-5=0\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

Câu 2:

Gọi G là trọng tâm tam giác ABC

\(P=MA^2+MB^2+MC^2=\overrightarrow{MA}^2+\overrightarrow{MB}^2+\overrightarrow{MC}^2\)

\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3MG^2+GA^2+GB^2+GC^2\)

Do \(G\) cố định \(\Rightarrow P_{min}\Leftrightarrow MG_{min}\Rightarrow M\) là chân đường cao hạ từ \(G\) xuống BC \(\Rightarrow M\) là trung điểm BC

12 tháng 5 2019

em cảm ơn =)))

NV
6 tháng 11 2019

Gọi \(M\left(x;0\right)\Rightarrow\overrightarrow{MA}\left(2-x;5\right)\) ; \(\overrightarrow{MB}=\left(-1-x;8\right)\); \(\overrightarrow{MC}=\left(4-x;-3\right)\)

a/ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(5-3x;10\right)\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\sqrt{\left(5-3x\right)^2+10^2}\ge10\)

\(T_{min}=10\) khi \(5-3x=0\Rightarrow x=\frac{5}{3}\Rightarrow M\left(\frac{5}{3};0\right)\)

b/ \(2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}=\left(17-4x;-7\right)\)

\(\Rightarrow A=\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|=\sqrt{\left(17-4x\right)^2+\left(-7\right)^2}\ge7\)

\(A_{min}=7\) khi \(17-4x=0\Rightarrow x=\frac{17}{4}\Rightarrow M\left(\frac{17}{4};0\right)\)

NV
17 tháng 12 2020

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{BM}=\left(3;m-2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MA=\sqrt{1+\left(m+2\right)^2}=\sqrt{m^2+4m+5}\\MB=\sqrt{9+\left(m-2\right)^2}=\sqrt{m^2-4m+13}\end{matrix}\right.\)

a.

\(MA+MB=\sqrt{1^2+\left(m+2\right)^2}+\sqrt{3^2+\left(2-m\right)^2}\)

\(MA+MB\ge\sqrt{\left(1+3\right)^2+\left(m+2+2-m\right)^2}=4\sqrt{2}\)

Dấu "=" xảy ra khi \(2-m=3\left(m+2\right)\Leftrightarrow m=-1\)

Hay \(M\left(0;-1\right)\)

b.

\(\left|MA-MB\right|\ge0\)

Dấu "=" xảy ra khi \(MA=MB\Leftrightarrow m^2+4m+5=m^2-4m+13\)

\(\Leftrightarrow m=1\Rightarrow M\left(0;1\right)\)