Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\left|MA-MB\right|\ge0\Rightarrow\left|MA-MB\right|_{min}=0\) khi \(MA=MB\Leftrightarrow MA^2=MB^2\)
Gọi \(M\left(0;a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(3;a-1\right)\\\overrightarrow{BM}=\left(5;a-5\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MA^2=3^2+\left(a-1\right)^2=a^2-2a+10\\MB^2=25+\left(a-5\right)^2=a^2-10a+50\end{matrix}\right.\)
\(MA^2=MB^2\Rightarrow a^2-2a+10=a^2-10a+50\)
\(\Rightarrow8a=40\Rightarrow a=5\Rightarrow M\left(0;5\right)\)
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+1\right)\\\overrightarrow{BM}=\left(-3;m-2\right)\end{matrix}\right.\)
\(T=AM^2+BM^2=1+\left(m+1\right)^2+9+\left(m-2\right)^2\)
\(=10+m^2+2m+1+m^2-4m+4\)
\(=2m^2-2m+15=2\left(m-\frac{1}{2}\right)^2+\frac{29}{2}\ge\frac{29}{2}\)
Dấu "=" xảy ra khi \(m=\frac{1}{2}\) hay \(M\left(0;\frac{1}{2}\right)\)
b) Điểm \(M\) thuộc trục tung nên tọa độ điểm \(M\) có dạng \(M\left(0;m\right)\).
\(N\) là trung điểm của \(AB\) suy ra \(N\left(1;4\right)\).
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{MN}\right|=2\sqrt{1^2+\left(m-4\right)^2}\ge2\sqrt{1}=2\)
Dấu \(=\) xảy ra khi \(m-4=0\Leftrightarrow m=4\).
Vậy \(M\left(0;4\right)\).
a) Trọng tâm \(G\) của tam giác \(ABC\):
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{4+2-2}{3}=\dfrac{4}{3},y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{3-1+5}{3}=\dfrac{7}{3}\).
Vậy \(G\left(\dfrac{4}{3};\dfrac{7}{3}\right)\) là trọng tâm tam giác \(ABC\).
Gọi G là trọng tâm tam giác ABC
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1}{3};y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{1}{3}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) nhỏ nhất khi \(3MG\) nhỏ nhất
\(\Leftrightarrow M\) là hình chiếu của \(G\) trên trục tung
\(\Leftrightarrow M\left(0;\dfrac{1}{3}\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\le3MG=1\)
Đẳng thức xảy ra khi \(M\left(0;\dfrac{1}{3}\right)\)
\(\Rightarrow\) Tung độ \(y_M=\dfrac{1}{3}\)
Bài này có vài cách giải, do M thuộc Oy nên tọa độ đơn giản, dùng công thức khoảng cách là dễ nhất:
Gọi \(M\left(0;a\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;a-2\right)\\\overrightarrow{MB}=\left(2;5-a\right)\end{matrix}\right.\)
\(\Rightarrow T=AM+BM=\sqrt{1^2+\left(a-2\right)^2}+\sqrt{2^2+\left(5-a\right)^2}\)
\(\Rightarrow T\ge\sqrt{\left(1+2\right)^2+\left(a-2+5-a\right)^2}=3\sqrt{2}\)
\(\Rightarrow T_{min}=3\sqrt{2}\) khi \(\frac{a-2}{1}=\frac{5-a}{2}\Rightarrow a=3\Rightarrow M\left(0;3\right)\)
tại sao AM = -1 và a-2 bạn nhỉ