Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+..+\dfrac{1}{9900}\)
\(A=\left(\dfrac{1}{2}+\dfrac{1}{12}\right)+\left(\dfrac{1}{30}+...+\dfrac{1}{9900}\right)\)
\(A>\dfrac{1}{2}+\dfrac{1}{12}\Rightarrow A>\dfrac{7}{12}\left(1\right)\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{5}{6}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< \dfrac{5}{6}\left(2\right)\)
\(\Rightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
Ta có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+..........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+............+\dfrac{1}{99.100}>\dfrac{1}{2}+\dfrac{1}{12}=\dfrac{7}{12}\)
\(\Leftrightarrow A>\dfrac{1}{12}\)\(\left(1\right)\)
Lại có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...........+\dfrac{1}{99.100}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{2}+\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)-.........-\left(\dfrac{1}{98}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Leftrightarrow A< \dfrac{5}{6}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\rightarrowđpcm\)
\(A=\frac{1}{2}+\frac{1}{12}+...+\frac{1}{9900}>\frac{1}{2}+\frac{1}{12}=\frac{7}{12}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\left(1-\frac{1}{2}+\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-...-\left(\frac{1}{98}-\frac{1}{99}\right)-\frac{1}{100}
Ta có: A=1/1.2+1/3.4+1/5.6+...+1/99.100
=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100-2(1/2+1/4+1/6+...+1/100)
=1+1/2+1/3+1/4+1/5+1/6+...+1/99+1/100-(1+1/2+1/3+1/4+...+1/50)
=1/26+1/27+1/28+...+1/100)
Do đó A=(1/51+1/52+...+1/75)+(1/76+1/77+...+1/100)
Ta có 1/51>1/52>...>1/75 và 1/76>1/77>...>1/100 nên
A>1/75.25+1/100.25=1/3+1/4=7/12
A<1/51.25+1/76.25<1/50.25+1/75.25=1/2+1/3=5/6
Vậy nên 7/12<A<5/6
Ta có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) > 1 / (1.2) + 1 / (3.4) = 1 / 2 + 1 / 12 = 7 / 12 (1)
Lại có : A = 1 / (1.2) + 1 / (3.4) + ... + 1 / (99.100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100)
= (1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 < 1 - 1 / 2 + 1 / 3 = 5 / 6 (2)
Từ (1) và (2) => 7 / 12 < A < 5 / 6
A = 1/1x2 + 1/3x4 + 1/4x5 + 1/5x6 + ..... + 1/99x100
A = 1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + .... + 1/99 - 1/100
A = 1 - 1/100
A = 99/100
Truong Quang Minh vào đây tham khảo nha:/hoi-dap/question/119017.html
a)A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) > 1 / (1*2) + 1 / (3*4) = 1 / 2 + 1 / 12 = 7 / 12 ♦
A = 1 / (1*2) + 1 / (3*4) + ... + 1 / (99*100) = (1 - 1 / 2) + (1 / 3 - 1 / 4) + ... + (1 / 99 - 100) =
(1 - 1 / 2 + 1 / 3) - (1 / 4 - 1 / 5) - (1 / 6 - 1 / 7) - ... - (1 / 98 - 1 / 99) - 1 / 100 <
1 - 1 / 2 + 1 / 3 = 5 / 6 ♥
♦, ♥ => 7 / 12 < A < 5 / 6
b)ta có:
1/1.2+1/3.4+1/5.6+...+1/49.50
=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)
=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2
=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)
=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50
hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Ta có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75},\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)nên :
\(A>\frac{1}{75}.25+\frac{1}{100}.25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(A< \frac{1}{51}.25+\frac{1}{76}.25< \frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy \(\frac{7}{12}< A< \frac{5}{6}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{100}-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)
\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{25}{100}=\frac{1}{4}\)
\(\Rightarrow A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(1\right)\)
Lại có: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{25}{50}=\frac{1}{2}\)
\(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=\frac{25}{75}=\frac{1}{3}\)
\(\Rightarrow A< \frac{1}{2}+\frac{1}{3}=\frac{5}{6}\left(2\right)\)
Từ (1) và (2) => \(\frac{7}{12}< A< \frac{5}{6}\left(đpcm\right)\)