Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 2² + 2³ + ... + 2²⁰¹⁷
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹⁸
S = 2S - S
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹⁸) - (1 + 2 + 2² + 2³ + ... + 2²⁰¹⁷)
= 2²⁰¹⁸ - 1
`S=1+2+2^2+2^3+...+2^2017`
`2S=2+2^2+2^3+2^4+...+2^2018`
`2S-S=(2+2^2+2^3+2^4+...+2^2018)-(1+2+2^2+2^3+...+2^2017)`
`S=2^2018 -1`
Ta có: A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow\) A < \(1+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow\) A < \(1+\left(1-\frac{1}{50}\right)\)
\(\Rightarrow\) A < 1 + 49/50
Mà 1+49/50 < 2 nên A < 1+49/50 < 2
\(\Rightarrow\) A < 2
Bỏ cái số 1 bé : "1" đằng sau cái số 1 lớn nhé . Câu hỏi chỉ có : \(A=3^{99}-3^{98}+3^{97}-3^{96}+.....+3^3-3^2+1=1\)
Bài 1a
B=4/1.3 + 4/3.5 + 4/5.7+...+4/2017.2019
B=4.2/(1.3).2 + 4.2/(3.5).2 + 4.2/(5.7).2+....+4.2/(2017.2019).2
B=2.( 2/1.3 + 2/3.5 + 2/5.7 +...+ 2/2017.2019 )
B=2.(1-1/3+1/3-1/5+1/5-1/7+....+1/2017-1/2019)
B=2.(1-1/2019)
B=2.(2019/2019-1/2019)
B=2.2018/2019
B=4036/2019
Ta có A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2 = 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/100.100 < 1/4 + 1/2.3 + 1/3.4 + ... + 1/99.100 A < 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100 = 1/4 + 1/2 - 1/100 = 3/4 - 1/100 \(\Rightarrow\) A < 3/4 ( đpcm )