Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (Q) là mặt phẳng qua B và song song (P) \(\Rightarrow\) (Q) nhận \(\left(2;-2;1\right)\) là 1 vtpt
Phương trình (Q):
\(2\left(x-2\right)-2\left(y-1\right)+1\left(z-3\right)=0\)
\(\Leftrightarrow2x-2y+z-5=0\)
Gọi C là hình chiếu vuông góc của A lên (Q). Đường thẳng (d') qua A vuông góc (Q) nhận \(\left(2;-2;1\right)\) là 1 vtcp
Phương trình (d'): \(\left\{{}\begin{matrix}x=1+2t\\y=-2t\\z=-2+t\end{matrix}\right.\)
Tọa độ C thỏa mãn:
\(2\left(1+2t\right)-2\left(-2t\right)+\left(-2+t\right)-5=0\Rightarrow t=\frac{5}{9}\) \(\Rightarrow C\left(\frac{19}{9};-\frac{10}{9};-\frac{13}{9}\right)\)
\(\Rightarrow\overrightarrow{BC}=\left(\frac{1}{9};-\frac{19}{9};-\frac{40}{9}\right)=\frac{1}{9}\left(1;-19;-40\right)\)
\(\Rightarrow\left\{{}\begin{matrix}b=-19\\c=-40\end{matrix}\right.\)
Không có đáp án, đề ảo thật
Sure là làm đúng đó, chắc số liệu ko chính xác
Đáp án B
Cách giải:
d : x - 2 1 = y - 1 - 2 = z - 1 2 có 1 VTCP v → =(1;-2;2) là một VTCP của ∆
∆ là đường thẳng qua A, vuông góc với d ⇒ ∆ ⊂ ( α ) mặt phẳng qua A và vuông góc d mặt phẳng qua A và vuông góc d
Phương trình mặt phẳng α
khi và chỉ khi đi qua hình chiếu H của B lên α
*) Tìm tọa độ điểm H:
Đường thẳng BH đi qua B(2;0;4) và có VTCP là VTPT của α có phương trình:
Chọn A
Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).
Suy ra (Q):2x+y+z-3=0.
Do Δ // (P) nên Δ ⊂ (Q)).
D (N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N', với N' là hình chiếu của N lên (Q).
Gọi d là đường thẳng đi qua N và vuông góc (P),
Ta có N’ ∈ d => N' (-4+2t;2+t;1+t); N’ ∈ (Q) => t = 4/3
cùng phương
Do |a|, |b| nguyên tố cùng nhau nên chọn
Vậy |a| + |b| + |c| = 15.
Bạn xem lại đề bài. Đề không đúng.
Đường thẳng d qua B thì B thuộc d
Đường thẳng d nằm trong (P) => d thuộc (P)
\(\Rightarrow\) B thuộc (P)
Nhưng thay tọa độ B vào d thì: \(2.2+2.1+3-7=2\ne0\) hoàn toàn không thỏa mãn
đề ghi như vậy, nhưng chắc là giáo viên cho đề sai, mình cũng lấy lạ
cảm ơn ạ