Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu với \(1>a>0\)thì biểu thức dưới căn không xác định bạn nhé! =====> đề sai rồi.
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
1/\(A=\dfrac{x^2-2x+2014}{x^2}\)
\(\Leftrightarrow A=\dfrac{2014x^2-2.x.2014+2014^2}{2014x^2}\)
\(\Leftrightarrow A=\dfrac{2013x^2+x^2-2.x.2014+2014^2}{2014x^2}\)
\(\Leftrightarrow A=\dfrac{2013x^2+\left(x-2014\right)^2}{2014x^2}\)
\(\Leftrightarrow A=\dfrac{2013}{2014}+\dfrac{\left(x-2014\right)^2}{2014x^2}\)
Có: \(\left(x-2014\right)^2\ge0\forall x\)
\(2014x^2>0\forall xvìx\ne0\)
\(\Rightarrow\dfrac{\left(x-2014\right)^2}{2014x^2}\ge0\)
\(\Rightarrow\dfrac{2013}{2014}+\dfrac{\left(x-2014\right)^2}{2014x^2}\ge\dfrac{2013}{2014}\)
\(\Rightarrow A\ge\dfrac{2013}{2014}\)
dấu "=" xảy ra khi và chỉ khi x - 2014 =0 <=> x = 2014
Vậy \(min_A=\dfrac{2013}{2014}\Leftrightarrow x=2014\)
2) Ta có:
\(x=\sqrt{a+\sqrt{a^2-1}}+\sqrt{a-\sqrt{a^2-1}}\)
\(\Leftrightarrow x^2=a-\sqrt{a^2-1}+2\sqrt{a-\sqrt{a^2-1}}.\sqrt{a+\sqrt{a^2-1}}+a+\sqrt{a^2-1}\)
\(\Leftrightarrow x^2=2a+2.\sqrt{\left(a-\sqrt{a^2-1}\right)\left(a+\sqrt{a^2-1}\right)}\)
\(\Leftrightarrow x^2=2a+2\sqrt{a^2-\left(a^2-1\right)}\)
\(\Leftrightarrow x^2=2a+2=2\left(a+1\right)\)
\(\Leftrightarrow-x^3=-2\left(a+1\right)x\)
Đặt \(A=x^3-2x^2-2\left(a+1\right)x+4x+2021\)
\(\Leftrightarrow A=x^3-2\left(2a+2\right)-x^3+4a+2021\)
\(\Leftrightarrow A=-4a-4+4a+2021\)
\(\Leftrightarrow A=2017\)
Bài 1:
a: ĐKXĐ: 2x+3>=0 và x-3>0
=>x>3
b: ĐKXĐ:(2x+3)/(x-3)>=0
=>x>3 hoặc x<-3/2
c: ĐKXĐ: x+2<0
hay x<-2
d: ĐKXĐ: -x>=0 và x+3<>0
=>x<=0 và x<>-3
a)
\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)
b)
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)
c)
\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
d)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)
A)
Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )
\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)
\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)
Có:
\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)
\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)
B)
\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)
\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)
\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$
T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)
\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)
Ta có: \(x^2=\left(\sqrt{a+\sqrt{a^2-1}}+\sqrt{a-\sqrt{a^2-1}}\right)^2\)
\(=a+\sqrt{a^2-1}+2\sqrt{a+\sqrt{a^2-1}}\cdot\sqrt{a-\sqrt{a^2-1}}+a-\sqrt{a^2-1}\)
\(=2a+2\sqrt{a^2-a^2+1}=2a+2=2\left(a+1\right)\)
Suy ra: \(x^3=x^2\cdot x=2\left(a+1\right)x\)
\(4a=2\cdot2a=2\left(2a+2\right)-4=2x^2-4\)
Nên \(P=x^3-2x^2-2\left(a+1\right)x+4a+2021\)
\(=x^3-2x^2-x^3+2x^2-4+2021=2021-4=2017\)