\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\).Chứng m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

A = 1 - 1/2014 = 2013/2014 

Mà 2013/2014 > 7/12 nên A > 7/12

Làm tắt thông cảm

3 tháng 4 2017

Ko hiểu?

23 tháng 4 2019

a)\(x\times\left(-2\right)-9\div\left(-3\right)=\left(2-7\right)^2\)

\(x\times\left(-2\right)-\left(-3\right)=\left(-5\right)^2\)

\(x\times\left(-2\right)-\left(-3\right)=25\)

\(x\times\left(-2\right)=25+\left(-3\right)\)

\(x\times\left(-2\right)=22\)

\(x=22:\left(-2\right)\)

\(x=\left(-11\right)\)

Vậy : x = ( -11 )

b) ( - 1) . ( -2 ) . (-3 ) ..... ( -2014)

Dãy số trên có tất cả ( 2014 - 1 ) : 1 + 1 = 2014 số hạng

=> a là 1 số nguyên dương 

=> a > 0 là đúng < vì số nguyên dương lớn hơn 0 và tích trên không thể bằng không >

c) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{2013^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

              ....................

              \(\frac{1}{2013^2}< \frac{1}{2012.2013}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2013}\)

\(\Rightarrow A< \frac{3}{4}-\frac{1}{2013}< \frac{3}{4}\)

Vậy : \(A< \frac{3}{4}\)

            

23 tháng 4 2019

cảm ơn mọi người nhiều ạ

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

20 tháng 12 2016

Mình sửa chút: B>1

26 tháng 4 2018

\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có : 

\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)

\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)

\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)

\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)

Mà : 

\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)

\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)

Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế ) 

\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)

\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 ) 

\(\Rightarrow\)\(A>3\) ( điều phải chứng minh ) 

Vậy \(A>3\)

Chúc đệ học tốt ~ 

26 tháng 4 2018

c, 

\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)

vì \(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

.............................

\(\frac{9999}{10000}< \frac{10000}{10001}\)

nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)

\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)

\(\Rightarrow C< \frac{1}{100}\)

bt lm mỗi một câu :v

,mình sửa lại đề:

\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)

xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015

=\(\frac{2013}{2013}\)

=\(1\)

vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc