K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+2ab+b^3-ab\)

\(=\left(a^3+b^3\right)+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(=1\cdot\left(a^2-ab+b^2\right)+ab=a^2-ab+b^2+ab\)

\(=a^2+b^2\)

\(a^2+b^2\ge0\Rightarrow A\ge0\)

3 tháng 4 2017

A=a3+2ab+b3-ab

A=(a+b)(a2-ab+b2)+ab

A=a2+b2

Áp dg BDT cosi ta co 

a2+b2>=2ab

Dấu = xảy ra khi a=b

=>Amin=2ab <=> a=b=0,5

=>a=0,5

19 tháng 5 2019

Chỉ làm được 1 tý thôi:

\(a+b+1=8ab\Rightarrow\frac{a+b+1}{ab}=\frac{8ab}{ab}\)

                                   \(\Leftrightarrow\frac{1}{b}+\frac{1}{a}+\frac{1}{ab}=8.\)

19 tháng 5 2019

Đáp án là 8 á. xảy ra khi a=b=\(\frac{1}{2}\) nhưng mình k biết cách làm.

4 tháng 4 2022

\(A=2\left(a^2+b^2\right)=2\left[\left(b+1\right)^2+b^2\right]=2\left(2b^2+2b+1\right)=4\left[b^2+b+\dfrac{1}{4}\right]+1=4\left(b+\dfrac{1}{2}\right)^2+1\ge1\)

 " = " \(\Leftrightarrow b=-\dfrac{1}{2};a=\dfrac{1}{2}\)

27 tháng 12 2019

https://olm.vn/hoi-dap/detail/33622965541.html?pos=34266440529

Tham khảo này

21 tháng 8 2019

Dạng này nhìn mệt vãi:(

Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)

Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:

Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:

\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v

Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!

20 tháng 8 2023

hay bạn ơi

 

7 tháng 4 2017

Ta có:

\(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)

\(\Leftrightarrow13b^2-26b-12a=0\)

\(\Leftrightarrow12\left(a+b\right)=13b^2-14b\)

\(\Leftrightarrow a+b=\frac{13b^2-14b}{12}\)

\(\Leftrightarrow a+b=b^2-b+\frac{b^2-2b}{12}=b^2-b+\frac{b\left(b-2\right)}{12}\)

Dễ thấy b phải là số chẵn (1)

để \(\frac{b\left(b-2\right)}{2.2.3}\) nguyên thì

\(\Rightarrow\orbr{\begin{cases}b⋮3\\b-2⋮3\end{cases}}\)(2)

Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}b=6k\\b-2=6k\end{cases}\left(k\ge1\right)}\)

Với \(b=6k\) thế vào ta được

\(a+b=\frac{13\left(6k\right)^2-14.\left(6k\right)}{12}=36k^2-7k\)

Dễ thấy hàm số \(f\left(k\right)=39k^2-7k\) là hàm đồng biết với \(k\ge1\)

Từ đây ta có a + b nhỏ nhất khi k nhơ nhất hay \(k=1\)

\(\Rightarrow\hept{\begin{cases}b=6\\a=26\\a+b=32\end{cases}}\)

Tương tự cho trường hợp \(b-2=6k\) sẽ tìm được GTNN của a + b

PS: Vì m thích làm sự đơn điệu của hàm số thôi. Nếu các b có cách khác thì cứ làm cho gọn nhé :)

7 tháng 4 2017

\(\Rightarrow a=26\)\(b=6\)Còn cách làm thì giống như Bạn alibaba nguyễn đó bạn 

~ Chúc bạn học giỏi ~~~