K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NL
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TT
0
LH
0
LH
2
T
24 tháng 7 2019
Áp dụng BĐT cauchy-Schwarz dạng Engel ta thu được:
\(E\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{t^2}{t-2}\left(t=a+b>2\right)\)
Ta có: \(E\ge\frac{t^2}{t-2}+4\left(t-2\right)-4t+8\ge2\sqrt{\frac{t^2}{t-2}.4\left(t-2\right)}-4t+8\)
\(=4t-4t+8=8\)
Đẳng thức xảy ra khi a = b = 2 (chị tự giải kĩ ra nha)
24 tháng 7 2019
Áp dụng bđt Cô si ta có:
\(E=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}\)
Mặt khác:\(\frac{a^2}{a-1}=\frac{a^2-4a+4+4a-4}{a-1}=\frac{\left(a-2\right)^2}{a-1}+4\ge4\)
Tương tự: \(\frac{b^2}{b-1}\ge4\).Nhân theo vế suy ra \(E\ge8\)
\("="\Leftrightarrow a=b=2\)
LT
0
Áp dụng BĐT Cauchy, ta có:
\(A\ge2\sqrt{\dfrac{a^2}{a-1}.\dfrac{b^2}{b-1}}=2.\dfrac{a}{\sqrt{a-1}}.\dfrac{b}{\sqrt{b-1}}\)
\(A\ge2.\dfrac{a}{\sqrt{1\left(a-1\right)}}.\dfrac{b}{\sqrt{1\left(b-1\right)}}\)
\(A\ge2.\dfrac{a}{\dfrac{1+a-1}{2}}.\dfrac{b}{\dfrac{1+b-1}{2}}=2.\dfrac{a}{\dfrac{a}{2}}.\dfrac{b}{\dfrac{b}{2}}=2.\dfrac{2a}{a}.\dfrac{2b}{b}=2.2.2=8\)
Dấu ''='' xảy ra khi a=b=2
Thanks