Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a>0, b>0, c>0, a+b+c\(\le\)1
tìm min của p=\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\)
Em làm thử nhé!
Bài 1: \(A=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4\left(a+b\right)+8\)
Cauchy vào là ra rồi ạ;)
Bài 2: Em chịu
2) Có: \(\sqrt{ab}\le\frac{a+b}{2}=1\); \(\sqrt{a}+\sqrt{b}=\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}\le\sqrt{2\left(a+b\right)}=2\)
\(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}\ge\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3=\frac{a^2}{\sqrt{a}}+\frac{b^2}{\sqrt{b}}\)
\(\ge\frac{\left(a+b\right)^2}{\sqrt{a}+\sqrt{b}}\ge=\frac{2^2}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
Thay a = b+1
\(P=\frac{\left(b+1\right)^2+b^2}{b}=\frac{2b^2+2b+1}{b}=2b+2+\frac{1}{b}\ge2+2\sqrt{2b.\frac{1}{b}}=2+2\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}a=b+1\\2b=\frac{1}{b}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}a=\frac{2+\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{cases}}\)
Vậy \(P_{min}=2+2\sqrt{2}\)
Áp dụng BĐT AM-GM ta có:
\(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\)
Và \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)
\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+15\left(\frac{1}{16a^2}+\frac{1}{16b^2}\right)\)
\(\ge2\sqrt{a^2\cdot\frac{1}{16a^2}}+2\sqrt{b^2\cdot\frac{1}{16b^2}}+15\cdot2\sqrt{\frac{1}{16a^2}\cdot\frac{1}{16b^2}}\)
\(=\frac{1}{2}+\frac{1}{2}+15\cdot2\cdot\frac{1}{16ab}\)\(\ge1+15\cdot2\cdot\frac{1}{16\cdot\frac{1}{4}}=\frac{17}{2}\)
Xảy ra khi \(a=b=\frac{1}{2}\)
cách làm như trên sẽ k được điểm, bởi bn làm ngược lại , đoán điểm rơi xong thay vào ,nếu k đoán được thì sao ?
thứ 2, a,b,c lớn nhất có thể = căn 3 >1 ,giả sử a= căn 3,b=c=0.
hôm nọ có god chém pqr rất thần thánh, e xin ''mượn'' lại:
Đặt \(\hept{\begin{cases}a+b+c=p\\ab+bc+ca=q\\abc=r\end{cases}}\)
\(P=2p+\frac{q}{r}\)
ta có BĐT \(q^2\ge3rp\)(auto chứng minh)
\(\Leftrightarrow\frac{q}{r}\ge\frac{3p}{q}\)
do đó \(P\ge2p+\frac{3p}{q}\)và \(q=\frac{p^2-3}{2}\)
cần cm \(P\ge9\Leftrightarrow2p+\frac{6p}{p^2-3}\ge9\Leftrightarrow\left(p-3\right)^2\left(2p+3\right)\ge0\)(luôn đúng)
vậy\(P\ge9\)
\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(=\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\left(1\right)\)
Áp dụng BĐT AM-GM ta có: :
\(\frac{a}{a^2+b^2+c^2}+9a\left(a^2+b^2+c^2\right)\ge2\sqrt{9a^2}=6a\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a^2+b^2+c^2}+9b\left(a^2+b^2+c^2\right)\ge6b;\frac{c}{a^2+b^2+c^2}+9c\left(a^2+b^2+c^2\right)\ge6c\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}+9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge6\left(a+b+c\right)\)
Theo BĐT Cauchy-Schwarz thì:
\(9\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9\cdot\frac{\left(a+b+c\right)^2}{3}\cdot\left(a+b+c\right)=3\)
\(\Rightarrow\frac{a}{a^2+b^2+c^2}+\frac{b}{a^2+b^2+c^2}+\frac{c}{a^2+b^2+c^2}\ge6-3=3\)
Và \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\ge\frac{9}{\frac{\left(a+b+c\right)^2}{3}}=27\)
Khi đó nhìn vào \(\left(1\right)\) thấy \(P\ge27+3=30\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Sử dụng bđt Svacxo ta có : \(\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}\)
Ta có bđt phụ sau : \(x^2\ge8\left(x-2\right)\)biến đổi tương đương \(\left(x-4\right)^2\ge0\)*đúng*
Khi đó : \(\left(a+b\right)^2\ge8\left(a+b-2\right)< =>\frac{\left(a+b\right)^2}{a+b-2}\ge8\)Hay \(P\ge8\)
Đẳng thức xảy ra khi và chỉ khi \(a=b=2\)
Vậy GTNN của P = 8 đạt được khi a = b = 2