Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều
Ta có : \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2018}{3^{2018}}\)(1)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2018}{3^{2019}}\)(2)
Lấy (1) trừ (2) theo vế ta có :
\(A-\frac{1}{3}A=\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2018}{3^{2018}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{2018}{3^{2019}}\right)\)
\(\Rightarrow\frac{2}{3}A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)-\frac{2018}{3^{2019}}\)
Đặt B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)
=> 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
Lấy 3B trừ B theo vế ta có :
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)\)
=> 2B = \(1-\frac{1}{3^{2018}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2018}.2}\)
Khi đó : \(\frac{2}{3}A=\frac{1}{2}-\frac{1}{3^{2018}.2}-\frac{2018}{3^{2019}}\)
\(A=\left(\frac{1}{2}-\frac{1}{3^{2018}.2}-\frac{2018}{3^{2019}}\right):\frac{2}{3}=\frac{3}{4}-\frac{1}{3^{2017}.4}-\frac{1009}{3^{2018}}=\frac{3}{4}-\left(\frac{1}{3^{2017}.\left(3+1\right)}+\frac{1009}{3^{2018}}\right)\)
\(=\frac{3}{4}-\left(\frac{1}{3^{2018}}+\frac{1}{3^{2017}}-\frac{1009}{3^{2018}}\right)=\frac{3}{4}-\left(\frac{1}{3^{2017}}-\frac{336}{3^{2017}}\right)=\frac{3}{4}+\frac{335}{3^{2017}}\)
Vì A > 0 (1)
Mặt khác\(\frac{335}{3^{2017}}< \frac{335}{1340}< \frac{1}{4}\)
=> \(\frac{335}{3^{2017}}< \frac{1}{4}\Rightarrow\frac{3}{4}+\frac{335}{3^{2017}}< \frac{1}{4}+\frac{3}{4}\Rightarrow A< 1\)(2)
Từ (1) và (2) => 0 < A < 1
=> A không phải là số nguyên
ta có: 2B=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
B=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+..+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
=>2B-B=\(1-\frac{1}{2^{99}}\)
mà 1/2^99>0 nên B<1 (đpcm)
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
A= 20-21+22-23+24-25...+22018
A=20-21+22-23(20-21+22)+26(...)+...22016(20+21+22)
xet thay 20-21+22 chia het cho 3
thi toan bo day co 673 cap chia het cho 3
k please