Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Gọi tâm mặt cầu nội tiếp tứ diện OABC là I (x; y; z). Ta có phương trình (OBC): x - z = 0. Phương trình mặt phẳng (ABC): 5x + 3y + 4z - 15 = 0. Tâm I cách đều hai mặt phẳng (OBC) và (ABC) suy ra:
Nhận xét: hai điểm A và O nằm về cùng phía với (α) nên loại (α). Hai điểm A và O nằm về khác phía (β) nên nhận (β). Thấy ngay một vectơ pháp tuyến là (10; a; b) thì a = 3, b = -1. Vậy a + b = 2
Chọn C
Ta có mặt phẳng α nhận vectơ n α → = ( 1 ; 1 ; 1 ) là vectơ pháp tuyến, đường thẳng d đi qua điểm A(0;-1;2) và nhận u d → = ( 1 ; 2 ; - 1 ) là vectơ chỉ phương.
Gọi β là mặt phẳng chứa đường thẳng d và vuông góc với mặt phẳng α
Khi đó đường thẳng ∆ là giao tuyến của hai mặt phẳng α và β . Do đó một vectơ chỉ phương của đường thẳng ∆ là .
Mà u → = ( 1 ; a ; b ) nên a=4, b = -5 => a+b = 4-5 =-1.
Chọn đáp án C