\(a>0;b>0;c\ne0\) và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

24 tháng 5 2018

\(\sqrt{\frac{a}{c+b}}=\frac{a}{\sqrt{a\left(c+b\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)

tương tự : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)(ĐPCM)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

15 tháng 9 2019

Ta c/m 1) \(c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a,b>0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

2) \(a,b>0\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

Thật vậy ĐK: a+c>0, b+c>0 mà c<0 \(\Rightarrow a,b>0\)

\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow\hept{\begin{cases}c< 0\\c^2=ab+ac+bc+c^2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}c< 0\\ab+bc+ca=0\end{cases}\Rightarrow\hept{\begin{cases}c< 0\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}}\)

\(\Rightarrow\)đpcm

2) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\)mà \(a,b>0\Rightarrow c< 0\)

\(\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\Rightarrow c=\frac{-ab}{a+b}\)

\(\Rightarrow\hept{\begin{cases}a+c=a-\frac{ab}{a+b}=\frac{a^2}{a+b}\\b+c=b-\frac{ab}{a+b}=\frac{b^2}{a+b}\end{cases}}\)

\(\Rightarrow\sqrt{a+c}+\sqrt{b+c}=\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{a+b}}=\frac{a+b}{\sqrt{a+b}}=\sqrt{a+b}\)

\(\Rightarrow\)Đpcm

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)