Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với 2 số x,y > 0 Theo Cauchy ta có: \(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow\frac{\left(x+y\right)^2}{4}\ge xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}^{\left(1\right)}\)
\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Áp dụng (1) ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\cdot\frac{4}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)
\(\Rightarrow3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
Đẳng thức xảy ra khi a=b và (a+b)=c hay a=b=1,5 và c=3.
\(P=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=\frac{a}{a}-\frac{1}{a}+\frac{b}{b}-\frac{1}{b}+\frac{c}{c}-\frac{4}{c}\)
=> \(P=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)(1)
Ta lại có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0< =>a+b-2\sqrt{ab}\ge0=>\frac{\left(a+b\right)^2}{4}\ge ab\)
<=> \(\frac{a+b}{ab}\ge\frac{4}{a+b}< =>\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\left(\frac{4}{a+b+c}\right)\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge4\left(\frac{4}{6}\right)=\frac{16}{6}=\frac{8}{3}\)(Do a+b+c=6 theo gt)
Thay vào (1), suy ra:
\(P=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
=> GTLL của P là: \(P=\frac{1}{3}\)
Dấu '=' xảy ra khi a=b và a+b=c => c=3; a=b=1,5
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}=4\left(\frac{1}{a+b}+\frac{1}{c}\right)\ge4\frac{4}{a+b+c}=4.\frac{4}{6}=\frac{8}{3}\)
\(\Rightarrow-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le\frac{-8}{3}\)
\(\Rightarrow M=1-\frac{1}{a}+1-\frac{1}{b}+1-\frac{4}{c}\)
\(=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le3-\frac{8}{3}=\frac{1}{3}\)
\(\Rightarrow M\le\frac{1}{3}\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}}}\)
Vậy GTLN của M là 1/3
2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)
Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)
Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))
Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1
3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)
Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Từ đó suy ra \(ab+bc+ca\le1\)
\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
dat bt tren la A . ap bdt bunhiacopxki ta co (a+b+c)^2 = ( a/(can1+c^2) . (can1+c^2) + b/(can1+a^2) . (can1+a^2) +c/(can1+b^2) . (can1+b^2) )^2 <= A(1 + c^2 + 1 + a^2 +1 + b^2) ... 0 <= A(3+a^2+b^2+c^2) ...nen 0<=A vì a,b,c>0 nen(3+a^2+b^2+c^2)>0 vay minA=0 khi a=b=c=0
2) M = (x25 + 1 + 1 + 1 + 1) - 5x5 + 2
Áp dụng BĐT Cô - si cho 5 số dương x25; 1;1;1;1 ta có: x25 + 1 + 1 + 1 + 1 \(\ge\)5.\(\sqrt[5]{x^{25}.1.1.1.1}=x^5\) = 5x5
=> M \(\ge\) 5x5 - 5x5 + 2 = 2
Vậy M nhỏ nhất = 2 khi x25 = 1 => x = 1
\(ab=\frac{1}{c};c=\frac{1}{ab}\)
\(a+b+c-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}-ab\)
\(=\left(a+b-ab-1\right)+\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)\)
\(=-\left(a-1\right)\left(b-1\right)+\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\)
\(=-\left(a-1\right)\left(b-1\right)+\frac{\left(a-1\right)\left(b-1\right)}{ab}\)
\(=-\left(a-1\right)\left(b-1\right)+\left(a-1\right)\left(b-1\right)c\)
\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Do biểu thức ban đầu dương nên ta có đpcm
a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)