K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

Áp dụng bất đẳng thức Cauchy cho cặp số \(\left(\frac{a}{b}+\frac{b}{a}\right)\)  không âm (do  \(a,b>0\)), ta có:

\(\frac{a}{b}+\frac{b}{c}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)  (điều phải chứng minh)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\frac{a}{b}=\frac{b}{a}\)  \(\Leftrightarrow\)  \(a=b\)

6 tháng 4 2016

toàn bài dễ cũng k giải đc lấy a/b+b/a -2 =a^2+b^2-2ab/ab=(a-b)^2/ab luôn lớn hơn hoặc bằng 0 vậy suy ra ĐPCM

6 tháng 4 2016

bài này có nhiều cách chứng minh 
1) ta có (a - b)^2 ≥ 0 ,<=> a^2 + b^2 ≥ 2ab <=> a^2 + b^2 + 2ab ≥ 4ab 
<=> (a + b)^2 ≥4ab , vì a , b > 0 nên a + b > 0 
=> a + b/ab ≥ 4/ a + b <=> 1/a + 1/b ≥ 4/a + b (đpcm) 
2) áp dụng BĐT Cô si cho hai số dương a và b , ta có 
a + b ≥ 2 √ab và 1/a + 1/b ≥ 1/ √ab 
=> (a + b)(1/a + 1/b) ≥ 4 => 1/a + 1/b ≥ 4/a + b 
dấu "=" xảy ra <=> a = b

6 tháng 4 2016

lời giải dễ hiểu nhất như thế này này (a+b)(1/a+1/b)=1+a/b+b/a+1=2+a/b+b/a mà ta có a/b+b/a luôn luôn lớn hơn hoặc bằng 2 vầy suy ra ĐPCM(để chứng minh a/b+b/c lớn hơn hoặc bằng 2 lấy a/b+b/a-2=a^2+b^2-2ab/ab=(a-b)^2/ab luôn lớn hơn hoặc bằng o vậy a/b+b/c luôn lớn hơn hoặc bằn 2)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

19 tháng 5 2017

a) \(2-x\ge0\Leftrightarrow x\le2\)

b) \(2+x\ge0\Leftrightarrow x\ge-2\)

c) \(7-x\ge0\Leftrightarrow x\le7\)

9 tháng 4 2017

áp dụng BDT cô si với 2 số dương ta có  a/b+b/a>=2

==> a/b+ 1 +b/a +1 >=4

==> (a+b)/a+(a+b)/b>=4

==>(a+b)(1/a+1/b)>=4

dấu "=" xảy ra khi a=b

9 tháng 5 2019

a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)

Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)

b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)

Giả sử a<b, ta đặt b=a+k(k>0)

Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)

Chứng minh tương tự với a>b

9 tháng 5 2019

cm cái j v bn ? 

3 tháng 4 2019

a)\(\left(a+\frac{b}{2}\right)^2\ge ab\)

\(\Leftrightarrow a^2+ab+\frac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2+ab+\frac{b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2+\frac{b^2}{4}\ge0\)(luôn lúng)

vậy \(\left(a+\frac{b}{2}^2\right)\ge ab\)

b)\(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)

\(\Leftrightarrow\frac{a^2+b^2+2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge0\)(luôn đóng vì a,b>0)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b>0

4 tháng 4 2019

b) \(\frac{a}{b}\rightarrow x\).C/m: \(x+\frac{1}{x}\ge2\)

Có \(\left(\sqrt{x}-\sqrt{\frac{1}{x}}\right)^2\ge0\Rightarrow x-2+\frac{1}{x}\ge0\Rightarrow x+\frac{1}{x}\ge2\) (đpcm)