Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi số đó là a b c d e
TH1: a = 1
b:7 cách; c:6 cách; d:5 cách; e:4 cách => Có 7.6.5.4 = 840 số.
TH2: b = 1
a: 6 cách; c:6 cách; d:5 cách; e:4 cách => Có 6.6.5.4 = 720 số.
TH3: c = 1
a: 6 cách; b:6 cách; d:5 cách; e:4 cách => Có 6.6.5.4 = 720 số.
Vậy có 840 +720 +720 = 2280 số.
Gọi số đó là \(\overline{abcd}\)
TH1: \(d=0\)
\(\Rightarrow\) abc có \(A_9^3=504\) cách chọn
TH2: \(d=5\)
\(\Rightarrow\) a có 8 cách chọn (khác 0 và 5), b có 8 cách (khác a và d), c có 7 cách
\(\Rightarrow8.8.7=448\) cách chọn abc
\(\Rightarrow504+448=952\) số
Đáp án D
Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.
Cách giải: Gọi số đó là a b c d e
- TH1: a = 1
+ b có 7 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 7.6.5.4 = 840 số
- TH2: b = 1
+ a ≠ b , a ≠ 0 , nên có 6 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 6.6.5.4 = 720 số.
- TH3: c = 1.
+ a ≠ c , a ≠ 0 , nên có 6 cách chọn.
+ b có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có 6.6.5.4 = 720 số.
Vậy có tất cả 840 + 720 + 720 = 2280 số.
Chứng minh bằng quy nạp đi em
Em tự kiểm tra với trường hợp n=2
Giả sử BĐT đúng với \(n=k\) hay \(u_k< \dfrac{2u_1+3\left(k-1\right)}{2}\)
Ta cần chứng minh: \(u_{k+1}< \dfrac{2u_1+3k}{2}\) hay \(\dfrac{u_k^3+4u_k}{u_k^2+1}< \dfrac{2u_1+3k}{2}\)
Do \(\dfrac{2u_1+3k}{2}=\dfrac{2u_1+3\left(k-1\right)}{2}+\dfrac{3}{2}>u_k+\dfrac{3}{2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{u_k^3+4u_k}{u_k^2+1}\le u_k+\dfrac{3}{2}\Leftrightarrow\dfrac{3}{2}\left(u_k-1\right)^2\ge0\) (luôn đúng)
Gọi số tự nhiên cần tìm có dạng .
TH1: Nếu a=1 khi đó có cách chọn 4 chữ số xếp vào b;c;d;e.
TH2: Nếu a khác 1 , khi đó: Có 6 cách chọn a. Có 2 cách xếp chữ số 1 vào số cần tạo ở vị trí b hoặc c. Các chữ số còn lại trong số cần tạo có cách chọn.
Như vậy trường hợp này có số.
Vậy có tất cả 840+1440=2280 số.
chọn A.
Gọi số đó là \(\overline{abcd}\)
TH1: \(d=0\)
\(\Rightarrow\) abc có \(A_9^3=504\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (2;4;6;8)
a có 8 cách chọn (khác 0 và d) , b có 8 cách (khác a và d), c có 7 các (khác a;b;d)
\(\Rightarrow4.8.8.7=1792\) cách
Tổng cộng: \(504+1792=2296\) số