K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2019

\(A=\frac{a^2}{b}+\frac{b^2}{a}+\frac{8}{a^2+b^2+6}=\frac{a^3+b^3}{ab}+\frac{8}{a^2+b^2+6}=a^3+b^3+\frac{8}{a^2+b^2+6}\)

\(A=\left(a+b\right)\left(a^2+b^2-ab\right)+\frac{8}{a^2+b^2+6}\ge2\sqrt{ab}\left(a^2+b^2-1\right)+\frac{8}{a^2+b^2+6}\)

\(A\ge2\left(a^2+b^2-1\right)+\frac{8}{a^2+b^2+6}=2a^2+2b^2-2+\frac{8}{a^2+b^2+6}\)

\(A\ge\frac{a^2+b^2+6}{8}+\frac{8}{a^2+b^2+6}+\frac{15}{8}\left(a^2+b^2\right)-\frac{11}{4}\)

\(A\ge2\sqrt{\frac{\left(a^2+b^2+6\right).8}{8\left(a^2+b^2+6\right)}}+\frac{15}{8}.2ab-\frac{11}{4}=3\)

Dấu "=" xảy ra khi \(a=b=1\)

22 tháng 4 2019

Cảm ơn bạn!

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

19 tháng 8 2016

Ta có: 

\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}\) . Do giả thiết cho \(ab=1\)

\(\Rightarrow\frac{a +b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\frac{a+b}{2}+\frac{2}{a+b}\)

Áp dụng Bất đẳng thức Cô-si: \(\frac{x+y}{2}\ge\sqrt{xy}\)

Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}=1\)

Ta sẽ chứng minh BĐT phụ sau: với z >0 thì 

\(z+\frac{1}{z}\ge2\Leftrightarrow\frac{z^2+1-2z}{z}\ge0\Leftrightarrow\frac{\left(z-1\right)^2}{z}\ge0\)

Áp dụng BĐT trên => \(\frac{a+b}{2}+\frac{2}{a+b}\ge2\) (khi a+b>0)Vậy \(a+b+\frac{2}{a+b}\ge3\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge3\)

 

NV
1 tháng 3 2020

Bạn tham khảo:

Câu hỏi của tran duc huy - Toán lớp 10 | Học trực tuyến

NV
12 tháng 2 2020

\(a+\frac{4}{b\left(a-b\right)^2}=a-b+b+\frac{4}{b\left(a-b\right)^2}\ge a-b+2\sqrt{\frac{4b}{b\left(a-b\right)^2}}=a-b+\frac{4}{a-b}\ge4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)

b/ \(a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b+1-1\ge4-1\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

14 tháng 8 2019

§1. Bất đẳng thức

NV
13 tháng 7 2020

\(GT\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Ta có:

\(2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\frac{1}{a^2}+1+\frac{1}{b^2}+1+\frac{1}{c^2}+1\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Cộng vế với vế:

\(3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

30 tháng 8 2019

Đặt \(x^2=a\ge0;y^2=b\ge0\)

Ta có BĐT phụ:\(4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)

Ta có:\(\frac{4ab}{\left(a+b\right)^2}+\frac{a}{b}+\frac{b}{a}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2}+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=3\) ( BĐT AM-GM )

Ta có đpcm

26 tháng 9 2019

Câu 2:

\(\frac{a^2b}{2a^3+b^3}-\frac{1}{3}+1-\frac{a^2+2ab}{2a^2+b^2}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{2a^2+b^2}-\frac{\left(a-b\right)^2\left(2a+b\right)}{3\left(2a^3+b^3\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{2a^2+b^2}-\frac{\left(2a+b\right)}{3\left(2a^3+b^3\right)}\right]\ge0\)

\(\Leftrightarrow\frac{2\left(a-b\right)^4\left(a+b\right)}{3\left(2a^2+b^2\right)\left(2a^3+b^3\right)}\ge0\left(ok!\right)\)

Em tính/ quy đồng/ phân tích thành nhân tử sai chỗ nào thì chị tự check nhá:)