K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Áp dụng bđt cô si ta có:
\(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{a+b+ab}{b+1}\ge2a\)
\(\Leftrightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge2a-\frac{a\left(b+1\right)+b}{b+1}=2a-a-\frac{b}{b+1}=a-\frac{b}{b+1}\)
Mặt khác:
\(\frac{b}{b+1}\le\frac{b+1}{4}\)
\(\Rightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge a-\left(\frac{b+1}{4}\right)\)
Tương tự:
\(\frac{b^2\left(c+1\right)}{b+c+bc}\ge b-\left(\frac{c+1}{4}\right)\)
\(\frac{c^2\left(a+1\right)}{c+a+ca}\ge c-\left(\frac{a+1}{4}\right)\)
\(\Rightarrow P\ge\left(a+b+c\right)-\left(\frac{a+1}{4}+\frac{b+1}{4}+\frac{c+1}{4}\right)=\left(a+b+c\right)-\left(\frac{\left(a+b+c\right)+3}{4}\right)=3-\left(\frac{3+3}{4}\right)=\frac{3}{2}\)Vậy GTNN của P=3/2 
(Thấy sai sai chỗ nào đó mà ko biết chỗ nào, ae thấy thì chỉ nhá )

31 tháng 12 2017

đoạn bạn dùng cô si ấy hình như bị sai do nếu a=b=c=1 thì sao lại a^2(b+1)/(a+b+ab)=(a+b+ab)/(b+1)
 

30 tháng 12 2017

Ta có: \(P=\Sigma\dfrac{a^2\left(b+1\right)}{a\left(b+1\right)+b}=\Sigma\dfrac{a^2\left(b+1\right)+ab-ab}{a\left(b+1\right)+b}=\Sigma\left(a-\dfrac{ab}{a\left(b+1\right)+b}\right)\)

\(\Rightarrow P=\left(a+b+c\right)-\Sigma\dfrac{ab}{a\left(b+1\right)+b}=3-\Sigma\dfrac{ab}{a\left(b+1\right)+b}\)

Áp dụng BĐT Cauchy \(\Rightarrow a\left(b+1\right)+b=ab+b+a\ge3\sqrt[3]{a^2b^2}\)

\(\Rightarrow P\ge3-\Sigma\dfrac{ab}{\sqrt[3]{a^2b^2}}=3-\Sigma\dfrac{\sqrt[3]{ab}}{3}\)

\(\sqrt[3]{ab}=\sqrt[3]{a.b.1}\le\dfrac{a+b+1}{3}\)

\(3-\Sigma\dfrac{\sqrt[3]{ab}}{3}=3-\dfrac{\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ac}}{3}\ge3-\dfrac{\dfrac{2\left(a+b+c\right)+3}{3}}{3}=3-1=2\)

\(\Rightarrow P\ge2\) \(\Rightarrow MinP=2\) khi a = b = c =1

AH
Akai Haruma
Giáo viên
30 tháng 12 2017

Lời giải khác:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{a^2(b+1)}{a+b+ab}+\frac{b^2(c+1)}{b+c+bc}+\frac{c^2(a+1)}{c+a+ac}\)\(=\frac{a^2}{\frac{a+b+ab}{b+1}}+\frac{b^2}{\frac{b+c+bc}{c+1}}+\frac{c^2}{\frac{c+a+ca}{a+1}}\)

\(\geq \frac{(a+b+c)^2}{\frac{(a+1)(b+1)-1}{b+1}+\frac{(b+1)(c+1)-1}{c+1}+\frac{(c+1)(a+1)-1}{a+1}}\)

\(\Leftrightarrow P\geq \frac{9}{a+b+c+3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}=\frac{9}{6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq \frac{9}{a+1+b+1+c+1}=\frac{9}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Do đó: \(6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\leq 6-\frac{3}{2}=\frac{9}{2}\)

\(\Rightarrow P\geq \frac{9}{\frac{9}{2}}=2\)

Vậy P min là 2

Dấu bằng xảy ra khi \(a=b=c=1\)

5 tháng 2 2020

Áp dụng BĐT Cô-si cho 3 số dương, ta có :

\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(a+c\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\)

Cần chứng minh : \(\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)^2}\)

hay \(8\left(a+b+c\right)^6\ge729abc\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Thật vậy, ta có : \(\left(a+b+c\right)^3\ge\left(3\sqrt[3]{abc}\right)^3=27abc\)

\(8\left(a+b+c\right)^3=\left(2\left(a+b+c\right)\right)^3=\left(a+b+b+c+a+c\right)^3\)

\(\ge\left(3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\right)^3=27\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Nhân từng vế 2 bất đẳng thức trên, ta được đpcm

Dấu "=" xảy ra khi a = b = c 

Vậy ...

5 tháng 2 2020

2. Áp dụng BĐT Cô-si cho 3 số không âm, ta có : 

\(B\ge3\sqrt[3]{\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(a^3+c^3+1\right)}}\)

Ta có : \(a^3+b^3+1\ge3\sqrt[3]{a^3b^3}=3ab\Rightarrow\sqrt{a^3+b^3+1}\ge\sqrt{3ab}\)

Tương tự : ....

\(\Rightarrow\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(c^3+a^3+1\right)}\ge\sqrt{27a^2b^2c^2}=\sqrt{27}\)

\(\Rightarrow B\ge3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

Vậy GTNN của B là \(3\sqrt{3}\)khi a = b = c = 1

7 tháng 12 2017

bài 1

ÁP dụng AM-GM ta có:

\(\frac{a^3}{b\left(2c+a\right)}+\frac{2c+a}{9}+\frac{b}{3}\ge3\sqrt[3]{\frac{a^3.\left(2c+a\right).b}{b\left(2c+a\right).27}}=a.\)

tương tự ta có:\(\frac{b^3}{c\left(2a+b\right)}+\frac{2a+b}{9}+\frac{c}{3}\ge b,\frac{c^3}{a\left(2b+c\right)}+\frac{2b+c}{9}+\frac{a}{3}\ge c\)

công tất cả lại ta có:

\(P+\frac{2a+b}{9}+\frac{2b+c}{9}+\frac{2c+a}{9}+\frac{a+b+c}{3}\ge a+b+c\)

\(P+\frac{2\left(a+b+c\right)}{3}\ge a+b+c\)

Thay \(a+b+c=3\)vào ta được":

\(P+2\ge3\Leftrightarrow P\ge1\)

Vậy Min là \(1\)

dấu \(=\)xảy ra khi \(a=b=c=1\)

22 tháng 2 2020

\(P=\left[\left(2+\frac{1}{a}+\frac{1}{b}\right)+1\right]\left[\left(2+\frac{1}{b}+\frac{1}{c}\right)+1\right]\left[\left(2+\frac{1}{c}+\frac{1}{a}\right)+1\right]\)

\(\ge\left(6\sqrt[3]{\frac{1}{4ab}}+1\right)\left(6\sqrt[3]{\frac{1}{4bc}}+1\right)\left(6\sqrt[3]{\frac{1}{4ca}}+1\right)\)

\(\ge\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ab}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4bc}}\right)^6}\right]\left[7\sqrt[7]{\left(\sqrt[3]{\frac{1}{4ca}}\right)^6}\right]\)

\(=\left[7\sqrt[7]{\left(\frac{1}{4ab}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4bc}\right)^2}\right]\left[7\sqrt[7]{\left(\frac{1}{4ca}\right)^2}\right]\)

\(=343\sqrt[7]{\left(\frac{1}{64\left(abc\right)^2}\right)^2}\ge343\sqrt[7]{\left(\frac{1}{64\left[\frac{\left(a+b+c\right)^3}{27}\right]^2}\right)^2}=343\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

P/s: Em chưa check lại đâu nha::D

22 tháng 2 2020

Khúc cuối bài ban nãy là \(\ge343\) nha! Em đánh nhầm

Cách khác (em thử dùng Holder, mới học nên em không chắc lắm):

\(P\ge\left(3+\sqrt[3]{\frac{1}{abc}}+\sqrt[3]{\frac{1}{abc}}\right)^3=\left(3+2\sqrt[3]{\frac{1}{abc}}\right)^3\ge\left(3+2\sqrt[3]{\frac{1}{\left[\frac{\left(a+b+c\right)^3}{27}\right]}}\right)^3\ge343\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)