Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu a > b và c > 0 thì ac > bc
Nếu a > b và c > 0 thì a + c > b + c
Nếu a > b và c < 0 thì a + c > b + c
Nếu a > b và c < 0 thì ac < bc
Nểu a < b và c > 0 thì ac < bc
Nếu a < b và c > 0 thì a + c < b + c
Nếu a < b và c < 0 thì ac > bc
Nếu a < b và c < 0 thì a + c < b + c
Cho a,b,c> 0 chứng minh bất đẳng thức
(c+\(\frac{a}{bc}\))(a+\(\frac{b}{ac}\))(b+\(\frac{c}{ab}\))>=8
do a,b,c > áp dụng BĐT Cosi ta có
c+a/bc>=2<c.a/bc>=2<a/b>(bạn hiểu <> là căn bậc 2 nhan )
a+b/ac>=2<b/c>
b+c/ab>=2<c/a>
suy ra (c+a/bc)(a+b/ac)(b+c/ab)>=2<a/b>.2<b/c>.2<c/a>=8<abc/abc>=8(đpcm)
Nếu a>0 và b>0 thì a+c>b+c
Nếu a<0 và b<0 thì a+c<b+c
Nếu a>b và c>0 thì ac>bc
Nếu a>c và c<0 thì ac<bc
b)Theo BĐT Côsi:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\left(\frac{ab}{c}.\frac{bc}{a}\right)}=2b\)
Tương tự ta có:
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2a\)
Cộng vế với vế của 3 bđt trên rồi chia 2 vế bđt thu được cho 2 ta có ngay đpcm.
Đẳng thức xảy ra khi a = b = c
a) Nếu k có điều kiện a, b > 0 thì bất đẳng thức k thể xảy ra
b) Ta có : \(\frac{ab}{c}+\frac{bc}{a}\ge2b\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2a\)
\(\frac{bc}{a}+\frac{ac}{b}\ge2c\)
Cộng 2 vế của bất đẳng thức ta được :
\(2.\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2.\left(a+b+c\right)\)
=> bất đẳng thức cần chứng minh
a) bn sai đề nhé,đề đúng là : \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\) nhé,vì mk làm rồi
Giả sử \(\frac{1}{a}+\frac{1}{b}\) > \(\frac{4}{a+b}\)
=> \(\frac{a+b}{ab}\) > \(\frac{4}{a+b}\)
=>\(\left(a+b\right)\left(a+b\right)\) > 4ab
=>\(\left(a+b\right)^2-4ab\) > 0
=>\(a^2+2ab+b^2-4ab\) > 0
=>\(a^2-2ab+b^2\) > 0
=>\(\left(a-b\right)^2\) > 0
BĐT cuối luôn đúng với mọi a;b
=>điều giả sử là đúng,ta có đpcm
(*)đề sai nên Kiệt ko ra là phải
tham khảo link: https://lazi.vn/edu/exercise/202136/cho-a-b-c-0-chung-minh-cac-bat-dang-thuc-sau
Với $a,b,c>0$ thì $a^3+b^3+3abc> ab(a+b+c)$ chứ không có dấu "=" nhé bạn. Còn về cách làm thì bạn Trương Huy Hoàng đã làm rất chi tiết rồi.
a3 + b3 + 3abc \(\ge\) ab(a + b + c)
\(\Leftrightarrow\) a3 + b3 + 3abc - a2b - ab2 - abc \(\ge\) 0
\(\Leftrightarrow\) a3 + b3 + 2abc - a2b - ab2 \(\ge\) 0
\(\Leftrightarrow\) a2(a - b) - b2(a - b) + 2abc \(\ge\) 0
\(\Leftrightarrow\) (a - b)(a2 - b2) + 2abc \(\ge\) 0
\(\Leftrightarrow\) (a - b)2(a + b) + 2abc \(\ge\) 0 (luôn đúng với mọi a, b, c > 0)
Chúc bn học tốt!