K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

toán này là toán lớp 9 mà

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

22 tháng 5 2021

`A=x^4-6x^3+18x^2-6xy+y^2+2012`
`=x^4-6x^3+9x^2+9x^2-6xy+y^2+2012`
`=(x^2-x)^2+(3x-y)^2+2012>=2012`
Dấu "=" xảy ra khi:
$\begin{cases}x=x^2\\y=3x\end{cases}$
`<=>` $\left[ \begin{array}{l}\begin{cases}x=0\\y=3x=0\\\end{cases}\\\begin{cases}x=1\\y=3x=3\\\end{cases}\end{array} \right.$
Vậy `min_A=2012<=>` $\left[ \begin{array}{l}x=y=0\\\begin{cases}x=1\\y=3\end{cases}\end{array} \right.$

a/ giá trị nhỏ nhất của A  là 2

b/ giá trị lớn nhất của B là 51

2 tháng 8 2021

tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x =  y = 12

5 tháng 7 2016

1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)

     =\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)

     =\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1

Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1

2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)

      =\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)

Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)

27 tháng 8 2023

\(\left\{{}\begin{matrix}4x^2+9y^2=9\\A=x-2y+3\end{matrix}\right.\)

Áp dụng bất đẳng thức Bunhiacopxki cho các cặp số \(\left(\dfrac{1}{2};2x\right);\left(-\dfrac{2}{3};3y\right)\)

\(x-2y=\dfrac{1}{2}.x+\left(-\dfrac{2}{3}\right).3y\)

\(\Rightarrow\left[\dfrac{1}{2}.2x+\left(-\dfrac{2}{3}\right).3y\right]^2\le\left(\dfrac{1}{4}+\dfrac{4}{9}\right)\left(4x^2+9y^2\right)=\dfrac{25}{36}.9\)

\(\Rightarrow x-2y\le\dfrac{5}{6}.3=\dfrac{5}{2}\)

\(\Rightarrow A=x-2y+3\le\dfrac{5}{2}+3\)

\(\Rightarrow A=x-2y+3\le\dfrac{11}{2}\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{\dfrac{1}{2}}{2x}=\dfrac{-\dfrac{2}{3}}{3y}\)

\(\Rightarrow\dfrac{2x}{\dfrac{1}{2}}=\dfrac{3y}{-\dfrac{2}{3}}\)

\(\Rightarrow\dfrac{4x^2}{\dfrac{1}{4}}=\dfrac{9y^2}{\dfrac{4}{9}}=\dfrac{4x^2+9y^2}{\dfrac{1}{4}+\dfrac{4}{9}}=\dfrac{9}{\dfrac{25}{36}}=\dfrac{9.36}{25}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{9.36}{25}.\dfrac{1}{16}\\y^2=\dfrac{9.36}{25}.\dfrac{4}{36}=\dfrac{9.4}{25}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3.6}{5}.\dfrac{1}{4}=\dfrac{9}{10}\\y=\dfrac{3.2}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy \(GTLN\left(A\right)=\dfrac{11}{2}\left(tạix=\dfrac{9}{10};y=\dfrac{6}{5}\right)\)