K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

\(a)A\left(x\right)=5+3x^2-x-2x^2\)

\(A\left(x\right)=\left(3x^2-2x^2\right)-x+5\)

\(A\left(x\right)=x^2-x+5\)

\(B\left(x\right)=3x+3-x-x^2\)

\(B\left(x\right)=-x^2+\left(3x-x\right)+3\)

\(B\left(x\right)=-x^2+2x+3\)

\(b)C\left(x\right)=A\left(x\right)+B\left(x\right)\)

\(C\left(x\right)=\left(x^2-x+5\right)+\left(-x^2+2x+3\right)\)

\(C\left(x\right)=x^2-x+5+-x^2+2x+3\)

\(C\left(x\right)=\left(x^2-x^2\right)+\left(-x+2x\right)+\left(5+3\right)\)

\(C\left(x\right)=-x+8\)

\(c)D\left(x\right)=A\left(x\right)-B\left(x\right)\)

\(D\left(x\right)=\left(x^2-x+5\right)-\left(-x^2+2x+3\right)\)

\(D\left(x\right)=x^2-x+5+x^2-2x-3\)

\(D\left(x\right)=\left(x^2+x^2\right)+\left(-x-2x\right)+\left(5-3\right)\)

\(D\left(x\right)=2x^2-3x+2\)

6 tháng 5 2022

wá ghê gớm;-;

a) \(A\left(x\right)=5+3x^2-x-2x^2\) 

    \(A\left(x\right)=5+\left(3x^2-2x^2\right)-x\)

    \(A\left(x\right)=5+x^2-x\)

    \(A\left(x\right)=x^2-x+5\)

 

    \(B\left(x\right)=3x+3-x-x^2\)

   \(B\left(x\right)=\left(3x-x\right)+3-x^2\)

   \(B\left(x\right)=2x+3-x^2\)

   \(B\left(x\right)=-x^2+2x+3\)

 

b) Ta có \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)

    \(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^+B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)+B\left(x\right)=0+x+8}\end{matrix}\)

Vậy \(C\left(x\right)=x+8\)

c) Ta có \(D\left(x\right)=A\left(x\right)-B\left(x\right)\)

        \(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^-B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)-B\left(x\right)=2x^2-3x+2}\end{matrix}\)

Vậy \(D\left(x\right)=2x^2-3x+2\)

Ở câu b, \(A\left(x\right)+B\left(x\right)=0+x+8\) số 0 bạn bỏ rồi để khoảng trống \(A\left(x\right)+B\left(x\right)=\)     \(x+8\) như vậy nha, với các dấu \(=\) ở câu b và c với cái số bạn đặt thẳng hàng nha (các từ in đậm bạn không cần ghi)

 

Bài 1:

a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)

\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)

\(=2x-5\)

Bài 1: 

b) 

\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)

\(P\left(3\right)=2\cdot3-5=6-5=1\)

3 tháng 5 2023

a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)

b,  \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)

Thay \(x=-1\) vào \(B\left(x\right)\)

\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)

\(\Rightarrow x=-1\) không là nghiệm của B(x) 

a: A(x)=3x^5+x^4-x^2+x

B(x)=3x^5-x^4+x^2+x-2

b: M(x)=B(x)-A(x)

=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x

=-2x^4+2x^2+2x-2

 

12 tháng 4 2022

\(f\left(x\right)=x^3-2x^2+3x+2\)

\(g\left(x\right)=-x^3-3x^2+2\)

12 tháng 4 2022

\(f\left(x\right)+g\left(x\right)=x^3-2x^2+3x+2+\left(-x^3\right)+3x^2+2\)

\(f\left(x\right)+g\left(x\right)=x^2+3x+4\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+3x+2+x^3+3x^2-2\)

\(f\left(x\right)-g\left(x\right)=2x^3+x^2+3x\)

20 tháng 3 2023

a) Ta có:

\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)

\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

b) Bậc của đa thức f(x) là 5

c) Ta có:

\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.

\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.