Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

talaays đơn thức nhân với từng hạng tử của đa thức
rồi cộng tích lại với nhau
rồi tìm x
nha bn

1
a) x^2+2x-5 b) x^2+x+7 9 (dư 8)
2
x=2; x = -(3*căn bậc hai(7)*i+1)/2;x = (3*căn bậc hai(7)*i-1)/2;
3
a=2

a: \(\frac{A}{B}=\frac{x^2y^4+2x^3y^{n}}{x^{n}y^2}=x^{2-n}\cdot y^2+2\cdot x^{3-n}\cdot y^{n-2}\)
Để A chia hết cho B thì \(\begin{cases}2-n\ge0\\ 3-n\ge0\\ n-2\ge0\end{cases}\Rightarrow\begin{cases}n\le2\\ n\le3\\ n\ge2\end{cases}\Rightarrow\begin{cases}n\le2\\ n\ge2\end{cases}\)
=>n=2
b: \(\frac{A}{B}=\frac{5x^8y^4-9x^{2n}y^6}{-x^7y^{n}}=-5xy^{4-n}+9x^{2n-7}y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}4-n\ge0\\ 2n-7\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\le4\\ n\ge\frac72\\ n\le6\end{cases}\Rightarrow\frac72\le n\le4\)
mà n là số tự nhiên
nên n=4
c: \(\frac{A}{B}=\frac{12x^8y^{2n}+25x^{12}y^5z^2}{4x^{3n}y^4}=3x^{8-3n}y^{2n-4}+\frac{25}{4}x^{12-3n}yz^2\)
Để A chia hết cho B thì \(\begin{cases}8-3n\ge0\\ 2n-4\ge0\\ 12-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le8\\ n\ge2\\ 3n\le12\end{cases}\)
=>\(2\le n\le\frac83\)
mà n là số tự nhiên
nên n=2
d: \(\frac{A}{B}=\frac{-13x^{17}y^{2n-3}+22x^{16}y^7}{-7x^{3n+1}y^6}=\frac{13}{7}x^{17-3n-1}y^{2n-3-6}-\frac{22}{7}x^{16-3n-1}y\)
\(=\frac{13}{7}\cdot x^{16-3n}y^{2n-9}-\frac{22}{7}x^{15-3n}y\)
Để A chia hết cho B thì \(\begin{cases}16-3n\ge0\\ 2n-9\ge0\\ 15-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le16\\ 2n\ge9\\ 3n\le15\end{cases}=>\begin{cases}n<=\frac{16}{3}\\ n\ge\frac92\\ n\le5\end{cases}\)
=>\(\frac92\le n\le5\)
mà n là số tự nhiên
nên n=5
e: \(\frac{A}{B}=\frac{20x^5y^{2n}-10x^4y^{3n}+15x^5y^6}{3x^2y^{n+1}}\)
\(=\frac{20}{3}\cdot x^{5-2}\cdot y^{2n-n-1}-\frac{10}{3}\cdot x^{4-2}\cdot y^{3n-n-1}+5x^3y^{6-n-1}\)
\(=\frac{20}{3}\cdot x^3\cdot y^{n-1}-\frac{10}{3}x^2y^{2n-1}+5x^3y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}n-1\ge0\\ 2n-1\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\ge1\\ n\ge\frac12\\ n\le6\end{cases}\Rightarrow1\le n\le6\)
mà n là số tự nhiên
nên n∈{1;2;3;4;5;6}

a,x2+6x-7=0
=>x2+7x-x-7=0
=>(x^2+7x)-(x+7)=0
=>x(x+7)-(x+7)=0 =>(x+7)(x-1)=0
=>\(\orbr{\begin{cases}x+7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=1\end{cases}}}\)
b, x^3-2x^2-5x+6=0
=>x(x^2-2x-5+6)=0
=>x(x^2-2x+1)=0\(^{\orbr{\begin{cases}x=0\\\left(x-1^2\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c, 2x^2-5x+3=0
=>2x^2-2x-3x+3=0
\(x^3-19x-30=0\)
\(\Rightarrow x^3+5x^2+6x-5x^2-25x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+2x+3x+6\right)=0\)
\(\Rightarrow\left(x-5\right)[x\left(x+2\right)+3\left(x+2\right)]=0\)
\(\Rightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x+3=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=-3\\x=-2\end{cases}}\)

a) \(x^2-2x-3=0\)
\(\Leftrightarrow x^2-2x+1-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-2^2=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
b) \(2x^2+5x-3=0\)
\(\Leftrightarrow2x^2-x+6x-3=0\)
\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)

Bài 4:
a: \(2x^4+18x^2=0\)
=>\(2x^2\left(x^2+9\right)=0\)
=>\(x^2=0\) (Vì \(2\left(x^2+9\right)=2x^2+18\ge18>0\forall x\) )
=>x=0
b: (x-5)(x+5)-15x+75=0
=>(x-5)(x+5)-15(x-5)=0
=>(x-5)(x+5-15)=0
=>(x-5)(x-10)=0
=>\(\left[\begin{array}{l}x-5=0\\ x-10=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=10\end{array}\right.\)
c: \(x^4=x^2\)
=>\(x^4-x^2=0\)
=>\(x^2\left(x^2-1\right)=0\)
=>\(\left[\begin{array}{l}x^2=0\\ x^2-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)
d: \(12x\left(6x-1\right)-24x^2=0\)
=>12x(6x-1-2x)=0
=>x(4x-1)=0
=>\(\left[\begin{array}{l}x=0\\ 4x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac14\end{array}\right.\)
Bài 2:
a: 4x-16+3y(4-x)
=4(x-4)-3y(x-4)
=(x-4)(4-3y)
b: \(9y^2-6y+1=\left(3y\right)^2-2\cdot3y\cdot1+1^2=\left(3y-1\right)^2\)
c: \(25x^2-4=\left(5x\right)^2-2^2=\left(5x-2\right)\left(5x+2\right)\)
d: \(x^2-12x+36=x^2-2\cdot x\cdot6+6^2=\left(x-6\right)^2\)
e: \(8x^3+36x^2+54x+27\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=\left(2x+3\right)^3\)
f: \(\left(2x-5\right)^2-\left(2x+y\right)^2\)
=(2x-5-2x-y)(2x-5+2x+y)
=(-y-5)(4x+y-5)
g: \(\left(2x-y\right)^3+\left(2x+y\right)^3\)
\(=8x^3-12x^2y+6xy^2-y^3+8x^3+12x^2y+6xy^2+y^3\)
\(=16x^3+12xy^2=4x\left(4x^2+3y^2\right)\)
Câu 1:
a: \(6x^2-72x=0\)
=>\(6\left(x^2-12x\right)=0\)
=>\(x^2-12x=0\)
=>x(x-12)=0
=>\(\left[\begin{array}{l}x=0\\ x-12=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=12\end{array}\right.\)
b: \(-2x^4+16x=0\)
=>\(-2x\left(x^3-8\right)=0\)
=>\(x\left(x^3-8\right)=0\)
=>\(\left[\begin{array}{l}x=0\\ x^3-8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x^3=8\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=2\end{array}\right.\)
c: \(\left(2x-1\right)^3-8x\left(x-3\right)\cdot\left(x+3\right)=-1\)
=>\(8x^3-12x^2+6x-1-8x\cdot\left(x^2-9\right)=-1\)
=>\(8x^3-12x^2+6x-1-8x^3+72x=-1\)
=>\(-12x^2+78x=0\)
=>-6x(2x-13)=0
=>x(2x-13)=0
=>\(\left[\begin{array}{l}x=0\\ 2x-13=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=\frac{13}{2}\end{array}\right.\)
d: \(x\left(x-5\right)-\left(x-3\right)^2=0\)
=>\(x^2-5x-\left(x^2-6x+9\right)=0\)
=>\(x^2-5x-x^2+6x-9=0\)
=>x-9=0
=>x=9
e: \(x\left(x-5\right)+3\left(x-5\right)=0\)
=>(x-5)(x+3)=0
=>\(\left[\begin{array}{l}x-5=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=5\\ x=-3\end{array}\right.\)
f: 2x(x-8)-5(8-x)=0
=>2x(x-8)+5(x-8)=0
=>(x-8)(2x+5)=0
=>\(\left[\begin{array}{l}x-8=0\\ 2x+5=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=8\\ x=-\frac52\end{array}\right.\)
g: \(30x-15x^2=0\)
=>15x(2-x)=0
=>x(2-x)=0
=>\(\left[\begin{array}{l}x=0\\ 2-x=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=2\end{array}\right.\)
h: \(-4x^3-12x=0\)
=>\(-4x\left(x^2+3\right)=0\)
=>x=0

a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)

viết sai rồi kìa!!!!
a)x\(^3\)-5x\(^2\)+8x-4=x\(^3\)-4x\(^2\)+4x-x\(^2\)+4x-4
=x(x\(^2\)-4x+4)-\(\left(x^2-4x+4\right)\)
= (x-1) (x-2)\(^2\)
b)Xét \(\dfrac{A}{B}=\dfrac{10x^2-7x-5}{2x-3}=5x+4+\dfrac{7}{2x-3}\)
Với x \(\in\) Z thì A chia hết chi B khi \(\dfrac{7}{2x-3}\in Z\)\(\Rightarrow\)\(7⋮\left(2x-3\right)\)
Mà Ư\(_{\left(7\right)}\)=\(\left\{-1,1,7,-7\right\}\)\(\Rightarrow\)x=5,-2,2,1thì Achia hết cho B
c)Mik ko bt lm
\(A=x^3-2x+n\)
\(B=n-2\)
\(A\text{⋮}B\) ⇒ \(\left(x^3-2x+n\right)\text{⋮}\left(n-2\right)\)
⇒ \(\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)
⇒ \(\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)
⇒ \(\left[\left(x-2\right)\left(x^2+2x+2\right)+\left(n+4\right)\right]\text{⋮}\left(x-2\right)\)
Vì \(\left(x-2\right)\left(x^2+2x+2\right)\text{⋮}\left(n-2\right)\)
Để \(A\text{⋮}B\)
⇒ \(n+4=0\)
⇒ \(n=-4\)