\(\sqrt{x+2}\)

a. Đặt y = \(\sqrt{x+2}\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

Lời giải:

a) Ta có:
\(y=\sqrt{x+2}(y\geq 0)\Rightarrow y^2=x+2\Rightarrow x=y^2-2\)

\(\Rightarrow A=x-2\sqrt{x+2}=y^2-2-2y\)

b)

\(A=y^2-2-2y=(y^2-2y+1)-3=(y-1)^2-3\)

Vì $(y-1)^2\geq 0$ với mọi $y\geq 0$ nên $A=(y-1)^2-3\geq -3$

Vậy GTNN của $A$ là $-3$ khi $y-1=0\Leftrightarrow y=1\Leftrightarrow x=-1$

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

Lời giải:

a) Ta có:
\(y=\sqrt{x+2}(y\geq 0)\Rightarrow y^2=x+2\Rightarrow x=y^2-2\)

\(\Rightarrow A=x-2\sqrt{x+2}=y^2-2-2y\)

b)

\(A=y^2-2-2y=(y^2-2y+1)-3=(y-1)^2-3\)

Vì $(y-1)^2\geq 0$ với mọi $y\geq 0$ nên $A=(y-1)^2-3\geq -3$

Vậy GTNN của $A$ là $-3$ khi $y-1=0\Leftrightarrow y=1\Leftrightarrow x=-1$

10 tháng 8 2020

a) 

Do: \(y=\sqrt{x+2}\)

<=> \(y^2=x+2\)

<=> \(x=y^2-2\)

Khi đó: \(A=y^2-2-2y\)

Vậy \(A=y^2-2y-2\)

10 tháng 8 2020

b) 

\(A=y^2-2y-2\left(cmt\right)\)

\(A=\left(y^2-2y+1\right)-3\)

\(A=\left(y-1\right)^2-3\)

Do \(\left(y-1\right)^2\ge0\forall y\)

=> \(\left(y-1\right)^2-3\ge-3\)

=> \(A\ge-3\)

Vậy A MIN = -3 <=> \(\left(y-1\right)^2=0\)

<=> \(y=1\)

Do: \(y=\sqrt{x+2}\)

<=> \(\sqrt{x+2}=1\)

<=> \(x+2=1\)

<=> \(x=-1\)

16 tháng 8 2019

a, A=x-2y

b

16 tháng 8 2019

Câu a : \(y=\sqrt{x+2}\Leftrightarrow y^2=x+2\Leftrightarrow x=y^2-2\)

\(\Rightarrow A=y^2-2-2y\)

Câu b : \(A=y^2-2y-2=\left(y-1\right)^2-3\ge-3\)

Vậy \(MIN_A=-3\) khi \(y=1\Leftrightarrow x=-1\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

1 tháng 8 2020

a) \(ĐKXĐ:x>0\)

\(Y=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)

\(\Leftrightarrow Y=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{\left(x-\sqrt{x}+1\right)}-1-2\sqrt{x}-1\)

\(\Leftrightarrow Y=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(x-\sqrt{x}+1\right)}-2\sqrt{x}-2\)

\(\Leftrightarrow Y=x+\sqrt{x}-2\sqrt{x}-2\)

\(\Leftrightarrow Y=x-\sqrt{x}-2\)

b) Ta có \(Y=x-\sqrt{x}-2=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Vậy \(Min_Y=-\frac{9}{4}\Leftrightarrow x=\frac{1}{4}\)

c) Để \(Y-\left|Y\right|=0\)

\(\Leftrightarrow Y=\left|Y\right|\)

\(\Leftrightarrow Y\ge0\)

\(\Leftrightarrow x-\sqrt{x}-2\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\ge0\)

\(\Leftrightarrow\sqrt{x}-2\ge0\) (Vì \(\sqrt{x}+1\ge0\))

\(\Leftrightarrow\sqrt{x}\ge2\)

\(\Leftrightarrow x\ge4\)  (ĐPCM)

19 tháng 8 2016
A^2 = x + y - 3 + 2√[(x - 2)(y - 3)] <= 1 + (x + y - 3) = 2 vậy A max là √2 khi x = 1,5; y = 2,5
19 tháng 8 2016
Hai cái còn lại làm tương tự